

Introduction to GoXam
Northwoods Software

www.nwoods.com

©2008-2015 Northwoods Software Corporation

GoXam provides controls for implementing diagrams in your WPF and Silverlight applications. GoWPF is the

name for the implementation of GoXam for WPF 3.5 or later; GoSilverlight is the name for the

implementation of GoXam for Silverlight 4.0 or later.

For web apps, the successor to GoXam for Silverlight is GoJS. Use GoJS for creating diagrams in HTML and

JavaScript, running entirely in the browser. See more at http://gojs.net.

You can find more documentation for GoXam in the installation kits. The site www.goxam.com has some

online GoXam samples for both WPF and Silverlight. The sources for these samples are in the kits too. And

you can ask questions and search for answers in the forum www.nwoods.com/forum or by e-mail to GoXam

at our domain (nwoods.com).

This document assumes a reasonably good working knowledge of WPF or Silverlight. For overviews and

introductions to these technologies, we suggest you first read several of the very good books about

developing WPF or Silverlight applications and the web sites starting at:

¶ http://msdn.microsoft.com/en-us/library/aa970268.aspx

¶ http://windowsclient.net/wpf/default.aspx

¶ http://www.silverlight.net/

¶ http://www.wpftutorial.net/

This document also assumes a good working knowledge of .NET programming, including generics and Linq

for Objects and Linq for XML.

http://www.nwoods.com/
http://gojs.net/
http://www.goxam.com/
http://www.nwoods.com/forum/forum_topics.asp?FID=7
http://msdn.microsoft.com/en-us/library/aa970268.aspx
http://windowsclient.net/wpf/default.aspx
http://www.silverlight.net/
http://www.wpftutorial.net/

Table of Contents
Introduction to GoXam ... 1

Summary ... 3
Diagram Models and Data Binding 4
Choosing a Model ... 4

TreeModel ... 4
GraphModel .. 5
GraphLinksModel .. 5

Model Data.. 5
Getting the model data 6
Discovering Relationships in the Data 7

Link information in the node data 7
Link information as separate link data 8
Group information in the node data 9
Group information with separate link data 10

Modifying the Model 12
Data Templates for Nodes 13

Data Binding .. 14
Using NodePanel ... 17
Resizing ... 19
Collapsing and Expanding Trees 20
In-place Text Editing and Validation 21

Spots .. 23
Data Templates for Links 24

Data Binding to Link Nodes 29
Link Routes .. 30
Link Labels ... 32

Link Connection Points on Nodes 34
Ports on Nodes .. 38

Data Templates for Groups 39
Collapsing and Expanding SubGraphs 41
Groups with Ports 43
Groups as Independent Containers 44

Layout .. 45
TreeLayout .. 47

ForceDirectedLayout 49
LayeredDigraphLayout 50
CircularLayout .. 51

Selection ... 52
Selection Adornments 52
Selection Appearance Changes 54

Content Alignment and Stretch 56
Initial Positioning and Scaling 60
Tools ... 61
Events ... 62

Mouse Clicks ... 63
Other Events ... 64

Commands .. 65
User Permissions .. 65
Link Validation .. 67
Diagram Background and Grids 69

Grids ... 70
Custom Grids .. 71

Printing ... 75
Overview ... 79
Palette .. 80
Template Dictionaries 82
Generating Images ... 85
Saving and Loading data using XML 85

Adding Data Properties 87
Updating a database 88
Deploying your application 90

Appendix .. 92

Diagram Templates .. 92
Layers .. 92
Decorative Elements and Unbound Nodes 94
Unbound Links .. 98
Performance considerations 99

Summary
The Diagram class is a WPF or Silverlight Control that fully supports the standard customization features

expected in WPF or Silverlight. These features include:

¶ styling

¶ templates

¶ data binding

¶ use of all WPF/Silverlight elements

¶ use of WPF/Silverlight layout

¶ animation

¶ commands

¶ printing

Diagrams consist of nodes that may be connected by links and that may be grouped together into groups.

All of these parts are gathered together in layers and are arranged by layouts. Most parts are bound to your

application data.

Each diagram has a Model which interprets your data to determine node-to-node link relationships and

group-member relationships.

Each diagram has a PartManager that is responsible for creating a Node for each data item in the

model's NodeSource data collection, and for creating or deleting Links as needed.

Each Node or Link is defined by a DataTemplate that defines its appearance and behavior.

The nodes may be positioned manually (interactively or programmatically) or may be arranged by the

diagram's Layout and by each GroupΩǎ Layout.

Tools handle mouse events. Each diagram has a number of tools that perform interactive tasks such as

selecting parts or dragging them or drawing a new link between two nodes. The ToolManager determines

which tool should be running, depending on the mouse events and current circumstances.

Each diagram also has a CommandHandler that implements various commands (such as Delete) and that

handles keyboard events.

The DiagramPanel provides the ability to scroll the parts of the diagram or to zoom in or out. The

DiagramPanel also contains all of the Layers, which in turn contain all of the Parts (Nodes and Links).

The Overview control allows the user to see the whole model and to control what part of it that the diagram

displays. The Palette control holds nodes that the user may drag-and-drop to a diagram.

You can select one or more parts in the diagram. The template implementation may change the appearance

of the node or link when it is selected. The diagram may also add Adornments to indicate selection and to

support tools such as resizing a node or reconnecting a link.

Diagram Models and Data Binding
One of the principal features of XAML-defined presentation is the use of data binding. Practically all controls

in the typical application will depend on data binding to get the information to be displayed, to be updated

when the data changes, and to modify the data based on user input.

A Diagram control, however, must support more complex features than the typical control. The most

complex standard controls inherit from ItemsControl, which will have a CollectionView to filter, sort, and

group items into an ordered list. But unlike the data used by an ItemsControl, a diagram features

relationships between data objects in ways more complex than a simple total ordering of items.

There are binary relationships forming a graph of nodes and links. In similar terminology they may be called

nodes and arcs, or entities and relationships, or vertices and edges.

There are grouping relationships, where a group contains members. They may be used for part/sub-part

containment or for the nesting of subgraphs.

We make use of a model to discover, maintain, navigate, and modify these relationships based on the data

that the diagram is bound to. Each Diagram has a model, but models can be shared between diagrams.

To be useful, every model needs to provide ways to do each of the following kinds of activities:

¶ getting the collection of data

¶ discovering the relationships in the data in order to build up the model

¶ updating the model when there are changes to the data

¶ examining the model and navigating the relationships

¶ modifying the collection of data, and changing their relationships

¶ notifying users of the model about changes to the model

¶ supporting transactions and undo and redo

¶ supporting data transfer and persistence

Some models are designed to be easier to use or to be more efficient when they have restrictions on the

kinds of relationships they support. There are different ways of organizing the data. And you might or

might not have any implementation flexibility in the classes used to implement the data, depending on your

application requirements and whether ȅƻǳ Ƴŀȅ ƳƻŘƛŦȅ ȅƻǳǊ ŀǇǇƭƛŎŀǘƛƻƴΩǎ Řŀǘŀ ǎŎƘŜƳŀΦ

To achieve these goals we provide several model classes in the Northwoods.GoXam.Model namespace.

Choosing a Model

There are currently three primary model classes that implement the basic notion of being a diagram model.

TreeModel
The TreeModel is the simplest model. It is suitable for applications where the data forms a graph that is a

tree structure: each node has at most one parent but may have any number of children, there are no

undirected cycles or loops in the graph, and there is at most one link connecting any two nodes.

If your graph is not necessarily tree-structured, or if you want to support grouping as well as links, you will

need to use either GraphModel or GraphLinksModel.

GraphModel

Use GraphModel when each node has a collection of references to the nodes that are connected to that

node and are either coming from or going to the node. GraphModel permits cycles in the graph, including

reflexive links where both ends of the link are the same node. However, there can be at most one link

connecting each pair of nodes in a single direction, and there can be no additional information associated

with each link.

Grouping in GraphModel supports the membership of any node in at most one other node, and cycles in the

grouping relationship are not permitted. Hence each subgraph is also a node, and node-subgraph

membership forms its own tree-like structure.

GraphLinksModel

If you need to support an arbitrary amount of data for each link, or if you need multiple distinct links

connecting the same pair of nodes in the same direction, or if you need to connect links to links, you will

need to use a separate data structure to represent each link. The GraphLinksModel takes a second data

source that is the collection of link data.

GraphLinksModel also supports additional information at both ends of each link, so that one can implement

logically different connection points for each node.

GraphLinksModel supports group-membership (i.e. subgraphs) in exactly the same manner that

GraphModel does.

Model Data

The model classes are generic classes. They are type parameterized by the type of the node data,

NodeType, and by the type of the unique key, NodeKey, used as references to nodes. In the case of

GraphLinksModel, there is also a type parameter for the link data type, LinkType, and a type parameter for

optional data describing each end of the link, PortKey. (However, the implementation of diagram Nodes

expects that PortKey must be a String.)

The model classes can probably be used with your existing application data classes. If you do not already

have such data classes you can implement them by inheriting from the optional data classes that are in the

Northwoods.GoXam.Model namespace, to add application-specific properties.

Generic Models Suggested data classes

TreeModel <NodeType, NodeKey> TreeModelNodeData<NodeKey>

GraphModel <NodeType, NodeKey> GraphModelNodeData<NodeKey>

GraphLinksModel <NodeType, NodeKey,
PortKey, LinkType>

GraphLinksModelNodeData<NodeKey> and
GraphLinksModelLinkData<NodeKey, PortKey>
(or UniversalLinkData)

The typical usage of models and data is:

 // create a typed model

 var model = new GraphLinksModel <MyData , String , String , MyLinkData >();

 // maybe set other model properties too...

 // specify the nodes, which includes the subgraph information

 model.NodesSource = new ObservableCollection <MyData >() {

 . . . // supply the node data

 };

 // specify the links between the nodes

 model.LinksSource = new ObservableCollection <MyLinkData >() {

 . . . // supply the link data

 };

 // have the Diagram use the new model

 myDiagram.Model = model;

 // after this point all model changes should be in a transaction

The node data and link data classes would be defined like:

 public class MyData : GraphLinksModelNodeData <String > {

 // define node data properties ; setters should call RaisePropertyChanged

 }

 public class MyLinkData : GraphLinksModelLinkData <String , String > {

 // define link data properties ; setters should call RaisePropertyChanged

 }

GraphModel and TreeModel do not have a LinksSource property and you would not need to define or use a
link data class.

Getting the model data

Each model needs access to the collection of data that it is modeling. This means setting the

IDiagramModel.NodesSource property. The value must be a collection of node data.

For example, consider the following model initialization:

 var model = new GraphModel <String , String >();

 model.NodesSource = new List <String >() { "Alpha" , "Beta" , "Gamma", "Delta" };

This produces a graph without any links. The node data are just strings. Without any customized templates

it might appear as:

In future sections we will discuss customizing the appearance and behavior of nodes using DataTemplates.

If you want to be able to add or remove data from the NodesSource collection and have the model (and

diagram) automatically updated, you should do the following:

 model.NodesSource =

 new ObservableCollection <String >() { "Alpha" , "Beta" , "Gamma", "Delta" };

ObservableCollection is in the System.Collections.ObjectModel namespace. It provides notifications when

the collection is changed, so Adding a string to that ObservableCollection will cause an extra node to be

created in the model and shown in the diagram.

Discovering Relationships in the Data

In order to build up the modelΩǎ ƪƴƻǿƭŜŘƎŜ ƻŦ ƭƛƴƪǎ ōŜǘǿŜŜƴ nodes, the model must examine each node

data for link information, or it needs to be given link data describing the connections between the node

data. Usually that information is stored as property values on the data, so you just need to provide those

property names to the model. For generality, not only are simple property names supported, but also

XAML-style property paths, typically property names separated by periods. Thus most model properties

ǘƘŀǘ ǎǇŜŎƛŦȅ ǇǊƻǇŜǊǘȅ ŀŎŎŜǎǎƻǊ ǇŀǘƘǎ ƘŀǾŜ ƴŀƳŜǎ ǘƘŀǘ ŜƴŘ ƛƴ άPathέ. An example is NodeKeyPath, which

specifies how to get the key value for a node data object.

However, when the information is not accessible via a property path, perhaps because a method call is

required or because the information needs to be computed, you can override protected virtual methods on

the model to get the needed information. These discovery-implementation methods have names that start

ǿƛǘƘ άFindέΦ Because using a property path may use reflection, overriding these methods also produces an

implementation that is faster and that is more likely to work in limited-permission environments, such as the

typical Silverlight or XBAP application.

Link information in the node data

If you have the link relationship information stored on each node data, you might implement the node data

class to have a property holding the name of the node and another property or two holding a collection of

names that the node is connected to. This is how GraphModel expects the information to be organized.

LŦ ȅƻǳ ŘƻƴΩǘ ǿŀƴǘ ǘƻ ƛƳǇƭŜƳŜƴǘ your own node data class, you can use one that we provide,

GraphModelNodeData. This is a generic class, parameterized by the type of the key value. In the following

examples, the keys are strings. We just need to specify the property names for discovering ǘƘŜ άƴŀƳŜέ ƻŦ

each node and for discovering the collection of connected node names.

 // model is a GraphModel usin g GraphModelNodeData<String> as the node data

 // and strings as the node key type

 var model = new GraphModel <GraphModelNodeData <String >, String >();

 model.NodeKeyPath = "Key" ; // use the GraphModelNodeData.Key property

 model.ToNodesPath = "ToKeys" ; // the node property to get a list of node keys

 model.NodesSource = new ObservableCollection <GraphModelNodeData <String >>() {

 new GraphModelNodeData <String >() {

 Key="Alpha" ,

 ToKeys= new ObservableCollection <String >() { "Beta" , "Gamma" }

 },

 new GraphModelNodeData <String >() {

 Key="Beta" ,

 ToKeys= new ObservableCollection <String >() { "Beta" }

 },

 new GraphModelNodeData <String >() {

 Key="Gamma",

 ToKeys= new ObservableCollection <String >() { "Delta" }

 },

 new GraphModelNodeData <String >() {

 Key="Delta" ,

 ToKeys= new ObservableCollection <String >() { "Alpha" }

 }

 };

 myDiagram.Model = model;

The result might appear as:

Link information as separate link data

If you have the link data separate from the node data, as is the case for GraphLinksModel, you might do:

 // model is a GraphLinksModel using strings as the node data

 // and UniversalLinkData as the link data

 var model = new GraphLinksModel <String , String , String , UniversalLinkData >();

 // the key value for each node data is just the whole data itself, a String

 model.NodeKeyPath = "" ;

 model.NodeKeyIsNodeData = true ; // NodeT ype and NodeKey values are the same!

 model.LinkFromPath = "From" ; // UniversalLinkData.From Č source ôs node key

 model.LinkToPath = "To" ; // UniversalLinkData.To Č destination ôs node key

 model.NodesSource =

 new ObservableCollection <String >() { "Alpha" , "Beta" , "Gamma", "Delta" };

 model.LinksSource = new ObservableCollection <UniversalLinkData >() {

 new UniversalLinkData ("Alpha" , "Beta"),

 new UniversalLinkData ("Alpha" , "Gamma"),

 new UniversalLinkData ("Beta" , "Beta"),

 new UniversalLinkData ("Gamma", "Delta"),

 new UniversalLinkData ("Delta" , "Alpha")

 };

 myDiagram.Model = model;

Note that the node data in this example are just strings. Because the node value, a string, is also its own key

value, there is no property to get the key given a node ς hence the NodeKeyPath is the empty string. Of

course in ŀ άǊŜŀƭέ ŀǇǇƭƛŎŀǘƛƻƴ ȅƻǳ ǿƻǳƭŘ ƘŀǾŜ ȅƻǳǊ ƻǿƴ node data class, either inheriting from

GraphLinksModelNodeData or defined from scratch. This would allow you to add all of the properties you

need for each node, bindable from the node data templates.

In this example we are using the UniversalLinkData class that we provide as a convenient pre-defined class

that you can use for representing link data. The From property of UniversalLinkData is supplied as the first

argument of the constructor; it refers to the source node. The To property is supplied as the second

argument; it refers to the destination node.

UniversalLinkData inherits from GraphLinksModelLinkData. As with the node data, the typical άǊŜŀƭέ

application would define its own link data class, either inheriting from GraphLinksModelLinkData or defined

from scratch, holding whatever information was needed for each link. Defining your own data classes is also

more type-ǎŀŦŜ ǘƘŀƴ ǳǎƛƴƎ ǘƘŜ ά¦ƴƛǾŜǊǎŀƭΧέ ŎƭŀǎǎŜǎ ǘƘŀǘ ƘŀǾŜ ǇǊƻǇŜǊǘƛŜǎ ƻŦ ǘȅǇŜ Object.

The resulting diagram is exactly the same as for the previous example:

Group information in the node data

Grouping/membership information is accessible in a similar manner, as properties on the node data. For
clarity, we use the subgraph terminology to refer to groups where each node can have at most one
container group. At the current time all GoXam groups are also subgraphs.

You need to set two more model properties used for model discovery:

 // model is a GraphModel or a GraphLinksModel

 model.NodeIsGroupPath = "IsSubGraph" ; // node property is true if itôs a group

 model.GroupNodePath = "SubGraphKey" ; // node property gets containerôs name

Then change the NodesSource data as follows, initializing the two additional properties:

 // model is a GraphModel using GraphModelNodeData <String > as the node data,

 // and the node keys are strings

 var model = new GraphModel <GraphModelNodeData <String >, String >();

 model.NodeKeyPath = "Key" ; // use the GraphModelNodeData.Key property

 model.ToNodesPath = "ToKeys" ; // this node property get s a list of node keys

 model.NodeIsGroupPath = "IsSubGraph" ; // node property is true if itôs a group

 model.GroupNodePath = "SubGraphKey" ; // node property gets containerôs name

 model.NodesSource = new ObservableCollection <GraphModel NodeData <String >>() {
 new GraphModelNode Data <String >() {

 Key="Alpha" ,

 ToKeys= new ObservableCollection <String >() { "Beta" , "Gamma" }

 },

 new GraphModelNode Data <String >() {

 Key="Beta" ,

 ToKeys= new ObservableCollection <String >() { "Beta" }

 },

 new GraphModelNode Data <String >() {

 Key="Gamma",

 ToKeys= new ObservableCollection <String >() { "Delta" },

 SubGraphKey= "Epsilon"

 },

 new GraphModelNode Data <String >() {

 Key="Delta" ,

 ToKeys= new ObservableCollection <String >() { "Alpha" },

 SubGraphKey= "Epsilon"

 },

 new GraphModelNode Data <String >() {

 Key="Epsilon" ,

 IsSubGraph= true

 },

 };

 myDiagram.Model = model;

This results in a diagram that might look like:

Group information with separate link data

The same result is easily achieved in a GraphLinksModel by using GraphLinksModelNodeData instead of

GraphModelNodeData as the node data. In this example we will subclass GraphLinksModelNodeData in

order to add a property for each node.

 // model is a GraphLinksModel using MyData as the node data

 // indexed with strings, an d UniversalLinkData as the link data

 var model = new GraphLinksModel <MyData , String , String , UniversalLinkData >();

 model.NodeKeyPath = "Key" ; // use the Graph Links ModelNodeData.Key property

 model.LinkFromPath = "From" ; // UniversalLinkData.From Č sourceôs node key

 model.LinkToPath = "To" ; // UniversalLinkData.To Č destinationôs node key

 model.NodeIsGroupPath = "IsSubGraph" ; // node property is true if itôs a group

 model.GroupNodePath = "SubGraphKey" ; // node property gets containerôs name

 // specify the nodes, which includes subgraph information

 // and other properties specific to MyData , such as Color

 model.NodesSource = new ObservableCollection <MyData >() {

 new MyData () { Key= "Alpha" , Color= "Purple " },

 new MyData () { Key= "Beta" , Color= "Orange" },

 new MyData () { Key= "Gamma", Color= "Red" , SubGraphKey= "Epsilon" },

 new MyData () { Key= "Delta" , Color= "Green" , SubGraphKey= "Epsilon" },

 new MyData () { Key= "Epsilon" , Color= "Blue" , IsSubGraph= true },

 };

 // specify the links between the nodes

 model.LinksSource = new ObservableCollection <UniversalLinkData >() {

 new UniversalLinkData ("Alpha" , "Beta"),

 new UniversalLinkData ("Alpha" , "Gamma"),

 new UniversalLinkData ("Beta" , "Beta"),

 new UniversalLinkData ("Gamma", "Delta"),

 new UniversalLinkData ("Delta" , "Alpha")

 };

 myDiagram.Model = model;

// Define custom node data; t he node key is of type String

// Add a property named Color that might change

[Serializable] // serializable only for WPF

public class MyData : GraphLinksModelNodeData <String > {

 public String Color {

 get { return _Color; }

 set {

 if (_Color != value) {

 String old = _Color;

 _Color = value ;

 RaisePropertyChanged("Color" , old, value);

 }

 }

 }

 private String _Color = "Black" ;

}

This model results in a diagram that looks the same as for the GraphModel ŀōƻǾŜΦ ό²ŜΩƭƭ ǎƘƻǿ Ƙƻǿ ǘƻ ǳǎŜ

the new Color property soon.)

If you did not need to support updating the diagram when the value of Color changes, perhaps because you

expect the data to be read-only, you could use a simpler implementation of the property:

// Define custom node data that does not notify the diagram about Color changes

[Serializable] // serializable only for WPF

public class MyData : GraphLinksModelNodeData <String > {

 public MyData () {

 this .Color = "Black" ;

 }

 public String Color { get; set; }

}

But if you do expect to modify the MyData.Color property and expect the corresponding node to change its

appearance, you must use the more verbose definition shown earlier that calls RaisePropertyChanged in the

setter.

Modifying the Model
Once you have created a model, told it how to discover relationships between the nodes (set the various

ΧtŀǘƘ properties of the model), ƛƴƛǘƛŀƭƛȊŜŘ ǘƘŜ ƳƻŘŜƭΩǎ Řŀǘŀ όŎǊŜŀǘŜŘ ŀ ŎƻƭƭŜŎǘƛƻƴ ƻŦ Řŀǘŀ ƻōƧŜŎǘǎ ŀƴŘ ǎŜǘ ǘƘŜ

ƳƻŘŜƭΩǎ NodesSource), and assigned the model to your Diagram, you might want to programmatically make

changes to the diagram. You do this by making changes to the model and to the data, not by trying to

change the Parts that are in the Diagram.

IŜǊŜΩǎ ǘƘŜ ŎƻŘŜ ŦƻǊ ŎǊŜŀǘƛƴƎ ŀ ƴƻŘŜ ŀƴŘ ŀ ƭƛƴƪ ǘƻ ǘƘŀǘ ƴƻŘŜΣ ƎƛǾŜƴ ŀ ǎǘŀǊǘƛƴƎ node:

// Given a Node, perhaps a selected one, or one that contains a button that

// was clicked, create another Node nearby and connect to it with a new link.

public Node ConnectToNewNode(Node start) {

 MyData fromdata = start.Data as MyData ;

 if (from data == null) return null ;

 // all changes should always occur within a model transaction

 myDiagram.StartTransaction("new connected node");

 // create the new node data

 MyData todata = new MyData ();

 // initialize the new node data here...

 todata.Text = "new node" ;

 todata.Location = new Point (start.Location.X + 250, start.Location.Y);

 // add the new node data to the model's NodesSource collection

 myDiagram.Model.AddNode(todata);

 // add a link to the model connecting the two data ob jects

 myDiagram.Model.AddLink(fromdata, null , todata, null);

 // finish the transaction

 myDiagram.CommitTransaction("new connected node");

 return myDiagram.PartManager.FindNodeForData(todata, myDiagram.Model);

}

Whenever you modify a diagram programmatically, you should wrap the code in a transaction.

StartTransaction and CommitTransaction are methods that you should call either on the Model or on the

Diagram. (The DiagramΩǎ methods just call the same named methods on the DiagramModel.) Although the

primary benefit from using transactions is to group together side-effects for undo/redo, you should use

model transactions even if you are not supporting undo/redo.

Note that you do not create a Node directly. Instead you create a data object corresponding to a node,

ƛƴƛǘƛŀƭƛȊŜ ƛǘΣ ŀƴŘ ǘƘŜƴ ŀŘŘ ƛǘ ǘƻ ǘƘŜ ƳƻŘŜƭΩǎ NodesSource ŎƻƭƭŜŎǘƛƻƴΦ Lǘ ƛǎ Ƴƻǎǘ ŎƻƴǾŜƴƛŜƴǘ ǘƻ Ŏŀƭƭ ǘƘŜ ƳƻŘŜƭΩǎ

AddNode method, but you could instead insert the data directly into the NodesSource collection, assuming

the collection implements INotifyCollectionChanged.

Programmatically creating links uses the same idea: modify the model by adding or modifying data. For a

GraphModel or a TreeModelΣ ȅƻǳ ŎǊŜŀǘŜ ŀ ƭƛƴƪ ōȅ ǎŜǘǘƛƴƎ ŀ ƴƻŘŜ ŘŀǘŀΩǎ ǇǊƻǇŜǊǘȅ ƻǊ ōȅ ŀŘŘƛƴƎ ŀ ǊŜŦŜǊŜƴŎŜ ǘƻ

ŀ ƴƻŘŜ ŘŀǘŀΩǎ ŎƻƭƭŜŎǘƛƻƴ ƻŦ ǊŜŦŜǊŜƴŎŜǎΦ CƻǊ ŀ GraphLinksModel you need to create a link data object and

ƛƴǎŜǊǘ ƛǘ ƛƴǘƻ ǘƘŜ ƳƻŘŜƭΩǎ LinksSource collection. The AddLink method shown above may work for any kind

of model, although for a GraphLinksModel there are some restrictions.

Iƻǿ ŘƻŜǎ ƻƴŜ ƎŜǘ ŀ ǊŜŦŜǊŜƴŎŜ ǘƻ ŀ ƴƻŘŜΚ LŦ ȅƻǳ Ŏŀƴ ŦƛƴŘ ǘƘŜ ƴƻŘŜ Řŀǘŀ ƻōƧŜŎǘΣ ǘƘŀǘΩǎ ŀƭƭ ȅƻǳ ƴŜŜŘ ǘƻ be able

to call PartManager.FindNodeForData, as shown above. But if the code is being called from an event

handler on an element in a Node, you will need to walk up the visual tree until you find the Node. The

easiest way to do that is with:

 Node node = Part .FindAncestor< Node>(sender as UIElement);

 if (node != null) {

 Node newnode = ConnectToNewNode(node);

 if (newdata != null) {

 // Select the new node

 myDiagram.SelectedParts.Clear();

 newnode.IsSelected = true ;

 }

 }

Data Templates for Nodes
The appearance of any node is determined not only by the data to which it is bound but also the

DataTemplate used to define the elements of its visual tree.

The simplest useful data templates for nodes are probably:

 <DataTemplate >

 <TextBlock Text ="{ Binding Path =Data}" />

 </ DataTemplate >

or:

 <DataTemplate >

 <TextBlock Text ="{ Binding Path =Data.Key}" />

 </ DataTemplate >

¢ƘŜ ŦƛǊǎǘ ƻƴŜ Ƨǳǎǘ ŎƻƴǾŜǊǘǎ ǘƘŜ ƴƻŘŜΩǎ Řŀǘŀ ǘƻ ŀ ǎǘǊƛƴƎ ŀƴŘ ŘƛǎǇƭŀȅǎ ƛǘΤ ǘhe second one converts the value of

the ƴƻŘŜΩǎ dataΩǎ Key property to a string and displays it. The first one is basically the one used in the

screenshots shown before that used strings as the node data; the second one was used for those examples

that used GraphModelNodeData or GraphLinksModelNodeData as the node data.

Because templates may be shared, and because it helps to simplify the XAML, you would normally use a

node template by defining it as a resource and referring to it as the value of the NodeTemplate property of

a Diagram. For example:

<UserControl.Resources >

 <DataTemplate x: Key="NodeTemplate 1">

 <TextBlock Text ="{ Binding Path =Data.Key}" go: Part .SelectionAdorned ="True" />

 </ DataTemplate >

 <! -- define other templates here -- >

</ UserControl.Resources >

. . .

<go: Diagram x: Name="myDiagram" NodeTemplate ="{ StaticResource NodeTemplate 1}" />

In this case the node will appear just as with the simpler templates, but when the user clicks on the node, a

rectangular selection handle will be appear around the node, visually indicating that it is selected. In the

ŦƻƭƭƻǿƛƴƎ ǎŎǊŜŜƴǎƘƻǘΣ ά!ƭǇƘŀέ ŀƴŘ ά.Ŝǘŀέ ŀǊŜ ǎŜƭŜŎǘŜŘ ŀƭƻƴƎ ǿƛǘƘ ǘƘŜ ƭƛƴƪ ōŜǘǿŜŜƴ ǘƘŜƳ ŀƴŘ ǘƘŜ ƭƛƴƪ

ŎƻƴƴŜŎǘƛƴƎ ά.Ŝǘŀέ ǿƛǘƘ ƛǘǎŜƭŦΦ

The node selection effect was achieved just by setting this attached property:

 go: Part.SelectionAdorned ="True"

Because Node inherits from Part, you can refer to precisely the same attached property with:

 go: Node.SelectionAdorned ="True"

Setting these kinds of attached properties has to be done on the root visual element of the data template,

not on any nested element within that template, nor on the Node itself.

In this section we will present more node data templates. These designs concentrate on simple nodes. A

ƭŀǘŜǊ ǎŜŎǘƛƻƴΣ άtƻǊǘǎ ƻƴ bƻŘŜǎέΣ ŘƛǎŎǳǎǎŜǎ ǘƘŜ ŀōƛƭƛǘȅ ǘƻ ƘŀǾŜ ƭƛƴƪǎ connect to different elements on a node.

Other sections discuss data templates for groups and for links.

You can also define multiple templates for nodes and dynamically choose which one to use. This allows you

to have many differently appearing nodes in the same diagram. The technique is discussed in a later section

about DataTemplateDictionaries.

You can find the XAML for the default templates and styles as:
docs\ GenericWPF.xaml or docs\ GenericSilverlight.xaml .

Data Binding

[ŜǘΩǎ ƳŀƪŜ ǳǎŜ ƻŦ ǘƘŜ MyData.Color property. In this example each node will have a colored cube as the

principal shape, with some text below it. First there needs to be a resource that is a converter from strings

(the type of MyData.Color) to Brush:

<go: StringBrushConverter x: Key="theStringBrushConverter" />

¢ƘŜƴ ǿŜ Ŏŀƴ ōƛƴŘ ŜŀŎƘ ǘŜȄǘΩǎ Foreground value to the Brush returned by converting the MyData.Color

property value.

<DataTemplate x: Key="NodeTemplate 2">

 <TextBlock Text ="{ Binding Path =Data.Key}"

 Foreground ="{ Binding Path =Data.Color,

 Converter ={ StaticResource theStringBrushConverter }}" />

</ DataTemplate >

We now get the following screenshot:

IŜǊŜΩǎ ŀ ƴƻŘŜ ǘŜƳǇƭŀǘŜ ŎƻƴǎƛǎǘƛƴƎ ƻŦ ǎŜǾŜǊŀƭ ǘŜȄǘ ōƭƻŎƪǎ ǎǳǊǊƻǳƴŘŜŘ ōȅ ŀ ōƻǊŘŜǊΥ

 <DataTemplate x: Key="NodeTemplate 3" >

 <Border BorderThickness ="1" BorderBrush ="Black"

 Padding ="2,0,2,0" CornerRadius ="3"

 go: Part .SelectionAdorned ="True"

 go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}">

 <StackPanel >

 <TextBlock Text ="{ Binding Path =Data.Name}" FontWeight ="Bold" />

 <TextBlock Text ="{ Binding Path =Data.Title}" />

 <TextBlock Text ="{ Binding Path =Data.ID}" />

 <TextBlock Text ="{ Binding Path =Data.Boss}" />

 </ StackPanel >

 </ Border >

 </ DataTemplate >

This results in nodes that look like these three (with an off-white background for the Diagram):

Note how the template is bound to the properties of the node data. Most of the bindings are one-way, from

the data to the elements. But the binding between the Node.Location attached ǇǊƻǇŜǊǘȅ ŀƴŘ ǘƘŜ ŘŀǘŀΩǎ

Location property is two-way: if the value of either property changes, the other one is updated. This means

that not ƻƴƭȅ ǿƛƭƭ ƳƻŘƛŦȅƛƴƎ ǘƘŜ ŘŀǘŀΩǎ Location property move the node in the diagram, but interactively

dragging the node will modify the data.

For a different kind of node, we will use a DrawingImage (WPF only).

<DataTemplate x: Key="NodeTemplate DI ">

 <StackPanel go: Part.SelectionAdorned ="True"

 go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}">

 <! -- WPF: This image uses a Drawing object for its source -- >

 <Image HorizontalAlignment ="Center">

 <Image.Source >

 <DrawingImage PresentationOptions : Freeze ="True">

 <DrawingImage.Drawing >

 <GeometryDrawing >

 <GeometryDrawing.Geometry >

 <GeometryGroup >

 <EllipseGeometry Center ="50,50" RadiusX ="45" RadiusY ="20" />

 <EllipseGeometry Center ="50,50" RadiusX ="20" RadiusY ="45" />

 </ GeometryGroup >

 </ GeometryDrawing.Geometry >

 <GeometryDrawing.Brush >

 <LinearGradientBrush >

 <GradientStop Offset ="0.0" Color ="Blue" />

 <GradientStop Offset ="1.0" Color ="#CCCCFF" />

 </ LinearGradientBrush >

 </ GeometryDrawing.Brush >

 <GeometryDrawing.Pen >

 <Pen Thickness ="10" Brush ="Black" />

 </ GeometryDrawing.Pen >

 </ GeometryDrawing >

 </ DrawingImage.Drawing >

 </ DrawingImage >

 </ Image.Source >

 </ Image >

 <TextBlock Text ="{ Binding Path =Data.Text}" HorizontalAlignment ="Cent er" />

 </ StackPanel >

</ DataTemplate >

The example DrawingImage was taken from the WPF documentation. This node template just adds a text

label centered below the image. The result is:

Using a DrawingImage in WPF is more resource efficient when the drawing can be shared by multiple nodes.

Silverlight does not permit such sharing, but you can still get the same visual result by using a Path and the

same GeometryGroup and LinearGradientBrush.

<DataTemplate x: Key="NodeTemplateEG">

 <StackPanel go: Part.SelectionAdorned ="True"

 go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}">

 <! -- Silverlight: use a Path -- >

 <Path Stroke ="Black" StrokeThickness ="10">

 <Path.Fill >

 <LinearGradientBrush >

 <GradientStop Offset ="0.0" Color ="Blue" />

 <GradientStop Offset ="1.0" Color ="#CCCCFF" />

 </ LinearGradientBrush >

 </ Path.Fill >

 <Path.Data >

 <GeometryGroup >

 <EllipseGeometry Center ="50,50" RadiusX ="45" RadiusY ="20" />

 <EllipseGeometry Center ="50,50" RadiusX ="20" RadiusY ="45" />

 </ GeometryGroup >

 </ Path.Data >

 </ Path >

 <TextBlock Text ="{ Binding Path =Data.Text}" HorizontalAlignment ="Center" />

 </ StackPanel >

</ DataTemplate >

Using NodePanel

Of course you can make your templates as complex as you need and as pretty as you want. Because it is

common to have each node display some kind of shape along with some text inside it, we have provided the

NodePanel class which can hold a NodeShape. (If you want the text to be outside of the shape, use a

StackPanel or Grid to arrange the elements.)

Furthermore, we have implemented geometries for many common shapes. These are listed by the

NodeFigure enumeration. By setting the go:NodePanel.Figure attached property on the NodeShape, the

shape will automatically use a Geometry corresponding to that particular figure.

The NodeFigures sample shows all of the predefined shapes, which are enumerated by the NodeFigure type.

Consider the following two resource definitions:

<! -- define a conversion from String to Color -- >
<go: StringColorConverter x: Key="theStringColorConverter" />

<DataTemplate x: Key="NodeTemplate 4">

 <! -- a NodePanel shows a background shape and

 places the other panel children inside the shape -- >

 <go: NodePanel go: Node.SelectionAdorned ="True"

 go: Node.ToSpot ="LeftSide" go: Node.FromSpot ="RightSide" >

 <! -- this shape gets the geometry defined by the NodePanel .Figure attached

 property -- >

 <go: NodeShape go: NodePanel .Figure ="Database"

 Stroke ="Black" StrokeThickness ="1">

 <Shape.Fill >

 <! -- use a fancier brush than a simple solid color -- >

 <LinearGradientBrush StartPoint ="0.0 0.0" EndPoint ="1.0 0.0">

 <LinearGradientBrush.GradientStops >

 <GradientStop Color ="{ Binding Path =Data.Color,

 Converter ={ StaticResource theStringColorConverter }}"

 Offset ="0.0" />

 <GradientStop Color ="White" Offset ="0.5" />

 <GradientStop Color ="{ Binding Path =Data.Color,

 Converter ={ Stati cResource theStringColorConverter }}"

 Offset ="1.0" />

 </ LinearGradientBrush.GradientStops >

 </ LinearGradientBrush >

 </ Shape.Fill >

 </ go: NodeShape>

 <! -- this TextBlock element is arranged inside the NodePanel ôs shape -- >

 <TextBlock Text ="{ Binding Path =Data.Key}" TextAlignment ="Center"

 HorizontalAlignment ="Center" VerticalAlignment ="Center" />

 </ go: NodePanel >

</ DataTemplate >

Note how the LinearGradientBrush is constructed, binding two of the gradient stop colors to the

MyData.Color property. [Note: this binding does not work in Silverlight.] The binding also depends on the

presence of a StringColorConverter (not a StringBrushConverter), which was also defined as a resource.

The result might look like:

The above use of NodePanel assumes that the shape, the first child of the panel, has a fixed width and

height. (If the Width or Height are not ǎǳǇǇƭƛŜŘΣ ǘƘŜȅ ŘŜŦŀǳƭǘ ǘƻ мллΣ ŀǎ ȅƻǳ Ŏŀƴ ǎŜŜ ƛƴ ǘƘŜ άŘŀǘŀōŀǎŜέ

shapes above.) The other children of the NodePanel are arranged inside the first child, observing the

HorizontalAlignment and/or VerticalAlignment properties of the child if the width and/or height are smaller

than the available area inside the first child. For example:

<DataTemplate x: Key="NodeTemplate2">

 <go: NodePanel Sizing ="Fixed">

 <go: NodeShape go: NodePanel.Figure ="Parallelogram1"

 Width ="100" Height ="50"

 Stroke ="Black" StrokeThickness ="1" Fill ="LightYellow" />

 <TextBlock Text ="{ Binding Path =Data.Key}" TextAlignment ="Left"

 HorizontalAlignment ="Right" VerticalAlignment ="Bottom" />

 </ go: NodePanel >

</ DataTemplate >

This might produce:

NodePanel.Sizing defaults to Fixed. Note the setting of Width and Height of the shape.

But you can also have the first child be sized to fit around the other children. This is convenient when you

want to show a variable amount of text and want the minimal amount of shape surrounding it. Just set

Sizing to Auto:

<DataTemplate x: Key="NodeTempla te3">

 <go: NodePanel Sizing ="Auto">

 <go: NodeShape go: NodePanel.Figure ="Parallelogram1"

 Stroke ="Black" StrokeThickness ="1" Fill ="LightYellow" />

 <TextBlock Text ="{ Binding Path =Data.Key}" TextAlignment ="Left"

 Margin ="10" />

 </ go: NodePanel >

</ DataTemplate >

This might produce:

Note how we do not set the Width or Height of the shape. Furthermore we do not set the

HorizontalAlignment or VerticalAlignment, because those properties have no effect. (TextAlignment

affects how the text is rendered in its allotted space, not how it is positioned in its panel. Margin reserves

some room around the TextBlock ς without it the parallelogram would be tightly around the text.)

Resizing

If you want to let users resize such ƴƻŘŜǎΣ ȅƻǳ ŦƛǊǎǘ ƴŜŜŘ ǘƻ ǘƘƛƴƪ ŀōƻǳǘ ǿƘƛŎƘ ŜƭŜƳŜƴǘ ƛǎ ǘƘŜ άƳŀƛƴέ ŜƭŜƳŜƴǘ

ǘƘŀǘ ǿƛƭƭ ŎƻƴǘǊƻƭ ǘƘŜ ǎƛȊŜ ŀƴŘ ƭŀȅƻǳǘ ƻŦ ŀƭƭ ƻŦ ǘƘŜ ƻǘƘŜǊ ŜƭŜƳŜƴǘǎΦ ¢ƘŜ άƳŀƛƴέ ŜƭŜƳŜƴǘ Ƴŀȅ ǾŜǊȅ ǿŜƭƭ ƴƻǘ ōŜ

ǘƘŜ ƻǳǘŜǊƳƻǎǘ ƻǊ άǊƻƻǘέ Ǿƛǎǳŀƭ ŜƭŜƳŜƴǘ ƻŦ ǘƘŜ ǘŜƳǇƭŀǘŜΦ So it is not always sufficient to just set go:

Part.Resizable ="True" on the root element; you also need to indicate which element should be the

one to get the resize handles and be resized by the ResizingTool:

<DataTemplate x: Key="NodeTemplate4">

 <go: NodePanel Sizing ="Fixed"

 go: Part.Resizable ="True" go: Part. Resize ElementName ="Shape">

 <go: NodeShape x: Name="Shape" go: NodePanel.Figure ="Parallelogram1"

 Width ="100" Height ="50"

 Stroke ="Black" StrokeThickness ="1" Fill ="LightYellow" />

 <TextBlock Text ="{ Binding Path =Data.Key}" Margin ="10"

 HorizontalAlignment ="Center" VerticalAlignment ="Center" />

 </ go: NodePanel >

</ DataTemplate >

Note how the root element refers to the NodeShape by name, so that user resizing will actually change the

width and height of that shape. If you do not specify the Part.ResizeElementName, the root element will

get the resize handles and attempts to resize the NodePanel are not likely to have the effect you want.

SizingҐέFixedέ is appropriate because that causes the NodePanel to fit the other child elements within the

shape. SizingҐέ!ǳǘƻέ causes NodePanel to fit the shape around all of the other children, which is not what

the user would want if they were trying to resize it. In this case, if you want the user to interactively resize

the node, you will need to have the Part.SelectionElementName refer to a different child of the NodePanel,

not the first child.

Collapsing and Expanding Trees

A common technique for simplifying tree-structured graphs is to collapse subtrees. One way to implement

this functionality is to add a Button to each node.

<! -- show either a "+" or a " - " as the Button content -- >

<go: BooleanStringConverter x: Key="theButtonConverter"

 TrueString =" - " FalseString ="+" />

<DataTemplate x: Key="NodeTemplate">

 <StackPanel Orientation ="Horizontal" go: Part.SelectionAdorned ="True"

 go: Node.IsTreeExpanded ="False">

 <! -- go: Node.IsTreeExpanded ="False" tells the node to start collapsed -- >

 <go: NodePanel Sizing ="Auto">

 <go: NodeShape go: NodePanel.Figure ="Ellipse"

 Fill ="{ Binding Path =Data.Color,

 Converter ={ StaticResource theBrushConverter }}" />

 <TextBlock Text ="{ Binding Path =Data.Color}" />

 </ go: NodePanel >

 <Button x: Name="myCollapseExpandButton" Click ="CollapseExpandButton_Click"

 Content ="{ Binding Path =Node.IsExpandedTree,

 Converter ={ StaticResource theButtonConverter }}"

 Width ="20" />

 </ StackPanel >

</ DataTemplate >

Note that the Button.Content is bound to the Node.IsExpandedTree property, via a converter that converts
ǘƘŜ ōƻƻƭŜŀƴ ǾŀƭǳŜ ǘƻ ŜƛǘƘŜǊ ǘƘŜ ǎǘǊƛƴƎ άҌέ ƻǊ ǘƘŜ ǎǘǊƛƴƎ ά-άΦ hŦ ŎƻǳǊǎŜ ȅƻǳ Ŏŀƴ όŀƴŘ ǇǊƻōŀōƭȅ ǎƘƻǳƭŘύ ǎǘȅƭŜ ǘƘŜ
Button ǘƘŜ ǿŀȅ ȅƻǳ ǿŀƴǘ ƛƴǎǘŜŀŘ ƻŦ ǳǎƛƴƎ ǘƘƻǎŜ ǘǿƻ ǘŜȄǘ ǎǘǊƛƴƎǎΦ .ǳǘ ǿŜΩƭƭ ƪŜŜǇ ƛǘ ǎƛƳǇƭŜ ƛƴ ǘƘƛǎ ŘƻŎument.

The Button.Click event handler might be implemented as:

private void CollapseExpandButton_Click(object sender, RoutedEventArgs e) {

 // the Button is in the visual tree of a Node

 Button button = (Button)sender;

 Node n = Part .FindAncestor< Node>(button);

 if (n != null) {

 SimpleData parentdata = (SimpleData)n.Data;

 // always make changes within a transaction

 myDiagram.StartTransaction("CollapseExpand");

 // toggle whether this node is expanded or collapsed

 n.IsExpandedTree = !n.IsExpandedTree;

 myDiagram.CommitTransaction("CollapseExpand");

 }

}

A graph might start with a single node:

An expansion (and a control-mouse-wheel zoom-out) might produce:

Further expansions (and zoom outs) might produce:

In -place Text Editing and Validation

²ƘŜƴ ȅƻǳ ǿŀƴǘ ǘƻ ƭŜǘ ǳǎŜǊǎ ƳƻŘƛŦȅ ǘƘŜ ǘŜȄǘ ƛƴ ŀ ƴƻŘŜΣ ƻƴŜ Ǉƻǎǎƛōƛƭƛǘȅ ƛǎ ǘƻ ƛƳǇƭŜƳŜƴǘ ȅƻǳǊ ƴƻŘŜΩǎ

DataTemplate to have its own TextBox that is normally Collapsed but that you make Visible when you want

to edit. In fact, you can have arbitrarily complex controls in each of your nodes. However, the disadvantage

is that all of those controls will always be created for each node, thereby increasing the overhead.

GoXam supports in-place text editing. Just set the Part.TextEditable attached property on a TextBlock.

<DataTemplate x: Key="NodeTemplate5 ">

 <go: NodePanel Sizing ="Auto">

 <go: NodeShape go: NodePanel.Figure ="Parallelogram1"

 Stroke ="Black" StrokeThickness ="1" Fill ="LightYellow" />

 <TextBlock Text ="{ Binding Path =Data.Text, Mode=TwoWay}"

 TextWrapping ="Wrap" TextAlignment ="Left" Margin ="5"

 go: Part. TextEdit able ="True" />

 </ go: NodePanel >

</ DataTemplate >

(Note that since we expect the user to modify the text, we data bind the text to a different property on the

data, not the unique Key.) If the user starts with:

Then if they select the node and then click on the text, the TextEditingTool brings up a TextBox. The user

can edit the text. Losing focus by clicking elsewhere or by tabbing will accept the changes; typing ESCAPE

will cancel the edit and restore the original string.

Here you can see the (blinking) cursor positioned at the end of the second line.

You can implement custom text validation by customizing the TextEditingTool. This example checks

ǿƘŜǘƘŜǊ ǘƘŜ ǳǎŜǊ Ƙŀǎ ǘȅǇŜŘ ǘƘŜ ƭŜǘǘŜǊ ΨŜΩΥ

 public class CustomTextEditingTool : TextEditingTool {

 protected override bool IsValidText(string oldstring, string newstring) {

 bool valid = !newstring.Contains("e");

 if (!valid) {

 MessageBox .Show("Oops: new string contains 'e'");

 }

 return valid;

 }

 }

and install with either:
 myDiagram.TextEditingTool = new CustomTextEditingTool ();

or:

 <go: Diagram . . . >

 <go: Diagram.TextEditingTool >

 <local : CustomTextEditingTool />

 </ go: Diagram.TextEditingTool >

 </ go: Diagram >

From that predicate you can use the AdornedPart.Data property to access the bound data.

Spots
Although previous examples have used standard named values such as Spot.BottomRight and

Spot.MiddleLeft, spots are more general than that. A spot represents a relative point from (0,0) to (1,1)

within a rectangle from the top-left corner to the bottom-right corner, plus an absolute offset.

IŜǊŜΩǎ ŀ ŘŜƳƻƴǎǘǊŀǘƛƻƴ ǎƘƻǿƛƴƎ ƴƛƴŜ ǘŜȄǘ ƻōƧŜŎǘǎ ǇƻǎƛǘƛƻƴŜŘ ŀǘ ǘƘŜ ǎǘŀƴŘŀǊŘ ƴƛƴŜ ǎǇƻǘǎΦ ¢Ƙƛǎ ƳŀƪŜǎ ǳǎŜ ƻŦ

the SpotPanel panel. You may find the SpotPanel useful when you want to position smaller elements

άƛƴǎƛŘŜέ ŀƴƻǘƘŜǊ ŜƭŜƳŜƴǘΦ

<go: SpotPanel >

 <Rectangle go: SpotPanel.Main ="True" Fill ="LightCoral"

 Width ="200" Height ="100" />

 <TextBlock go: SpotPanel.Spot ="0.0 0.0" Text ="0 0" />

 <TextBlock go: SpotPanel.Spot ="0.5 0.0" Text ="0.5 0" />

 <TextBlock go: SpotPanel.Spot ="1.0 0.0" Text ="1 0" />

 <TextBlock go: SpotPanel.Spot ="0.0 0.5" Text ="0 0.5" />

 <TextBlock go: SpotPanel.Spot ="0.5 0.5" Text ="0.5 0.5" />

 <TextBlock go: SpotPanel.Spot ="1.0 0.5" Text ="1 0.5" />

 <TextBlock go: SpotPanel.Spot ="0.0 1.0" Text ="0 1" />

 <TextBlock go: SpotPanel.Spot ="0.5 1.0" Text ="0.5 1" />

 <TextBlock go: SpotPanel.Spot ="1.0 1.0" Text ="1 1" />

</ go: SpotPanel >

The SpotPanel.Spot attached property specifies where the element should be positioned in a SpotPanel.

The SpotPanel.Alignment attached property specifies what point of the element should be positioned at the

SpotPanel.Spot point. By default the center of each element is aligned at the spot point.

The Main attached property says that the spots are all relative to the bounds of the first child element of the

SpotPanel, which in this case is a Rectangle.

Instead of always centering the element at the spot point, you can use any other spot in that element. The

following three child elements are all positioned at the same (0, 0) spot, but with different alignments.

<go: SpotPanel >

 <Rectangle go: SpotPanel.Main ="True" Fill ="LightCoral"

 Width ="200" Height ="100" />

 <TextBlock go: SpotPanel.Spot ="0 0"

 go: SpotPanel.Alignment ="1.0 1.0" Text ="1 1" />

 <TextBlock go: SpotPanel.Spot ="0 0"

 go: SpotPanel.Alignment ="0.5 0.5" Text ="0.5 0.5" />

 <TextBlock go: SpotPanel.Spot ="0 0"

 go: SpotPan el.Alignment ="0.0 0.0" Text ="0 0" />

</ go: SpotPanel >

Finally, Spots can have absolute offsets in addition to the fractional relative position. These offsets may be

negative. You can specify the X and Y offsets as the third and fourth numbers. In this example there are

three TextBlocks at the bottom-left corner. All have the default center alignment. One has an X offset of

negative 30 (i.e. further towards the left), one is centered exactly at the bottom-left corner of the rectangle,

and one is shifted towards the right by 30. Similarly there are three TextBlocks at the bottom-right corner,

with one shifted up 10, and with one shifted down 10.

<go: SpotPanel >

 <Rectangle go: SpotPanel.Main ="True" Fill ="LightCoral"

 Width ="200" Height ="100" />

 <TextBlock go: SpotPanel.Spot ="0 1 - 30 0" Text =" - 30 0" />

 <Tex tBlock go: SpotPanel.Spot ="0 1 0 0" Text ="0 0" />

 <TextBlock go: SpotPanel.Spot ="0 1 30 0" Text ="30 0" />

 <TextBlock go: SpotPanel.Spot ="1 1 0 - 10" Text ="0 - 10" />

 <TextBlock go: SpotPanel.Spot ="1 1 0 0" Text ="0 0" />

 <TextBlock go: SpotPanel.Spot ="1 1 0 10" Text ="0 10" />

</ go: SpotPanel >

Data Templates for Links
The simplest kind of link consists of only a line, perhaps consisting of multiple segments and curves. You

must use the LinkShape element for this:

 <DataTemplate >

 <go: LinkShape Stroke ="Black" StrokeThickness ="1" />

 </ DataTemplate >

Like node templates, the typical pattern is to define templates as resources, and refer to them when

initializing the Diagram:

<UserControl.Resources >

 <DataTemplate x: Key="LinkTemplate 1">

 <go: LinkShape Stroke ="Black" StrokeThickness ="1" />

 </ DataTemplate >

 <! -- define other templates here -- >

</ UserControl.Resources >

. . .

<go: Diagram x: Name="myDiagram" LinkTemplate ="{ StaticResource LinkTemplate 1}" />

But note that such a link template will result in links for which there is no arrowhead nor any other

decoration. Thus such a simple template can only be used where the links are not directional or where the

direction is implicit in the diagram, such as in a tree.

It is more common to have at least an arrowhead on each link. For example, the following template is

similar to the default link template ς the one used when you do not specify the Diagram.LinkTemplate

property.

<DataTemplate x: Key=" LinkTemplate 2">

 <go: LinkPanel go: Part .SelectionElementName ="Path"

 go: Part.SelectionAdorned ="True" >

 <go: LinkShape x: Name="Path" go: LinkPanel.IsLinkShape ="True"

 Stroke ="Black" StrokeThickness ="1" />

 <Polygon Fill ="Black" Points ="8 4 0 8 2 4 0 0" <! -- the arrowhead -- >

 go: LinkPanel.Alignment ="MiddleRight " go: LinkPanel.Index =" - 1"

 go: LinkPanel.Orientation ="Along" />

 </ go: LinkPanel >

</ DataTemplate >

Here is a visual representation of the points of the polygon:

This results in links that appear like those with arrowheads shown before:

Note the use of the LinkPanel class. A LinkPanel is a Panel that should have a LinkShape ƛƴ ƛǘ ƴŀƳŜŘ άtŀǘƘέΦ

¢ƘŜ ǇŀǘƘΩǎ Geometry ƛǎ ŎƻƳǇǳǘŜŘ ōȅ ǘƘŜ ƭƛƴƪΩǎ Route ς i.e. it is given a set of points so that the link shape

ŀǇǇŜŀǊǎ ǘƻ ŎƻƴƴŜŎǘ ǘƘŜ ƭƛƴƪΩǎ ǘǿƻ ƴƻŘŜǎΦ

hƴŎŜ ǘƘŜ ƭƛƴƪΩǎ ǊƻǳǘŜ ƛǎ ŘŜǘŜǊƳƛƴŜŘΣ ǘƘŜ LinkPanel can arrange all of the other child elements of the panel to

be somewhere along the path of the link. In this template, there is a Polygon that is acting as an arrowhead.

There are three attached properties that control how a LinkPanel child such as this Polygon is positioned

and rotated relative to the link shape. All three are used in this example.

¶ The LinkPanel.Alignment attached property is a Spot that indicates what point within the polygon

should be positioned along the link path. (More about spots later.) In the above case the

MiddleRight spot happens to be the point 8,4.

¶ The LinkPanel.Index attached property specifies at which segment the child element should be

ǇƭŀŎŜŘΤ ȊŜǊƻ ƳŜŀƴǎ ŀǘ ǘƘŜ ŜƴŘ ƴŜŀǊ ǘƘŜ άŦǊƻƳέ ƴƻŘŜΣ -1 means ŀǘ ǘƘŜ ŜƴŘ ƴŜŀǊ ǘƘŜ άǘƻέ ƴƻŘŜΦ

¶ The LinkPanel.Orientation attached property controls whether and how the child element is

ǊƻǘŀǘŜŘΤ ά!ƭƻƴƎέ ƳŜŀƴǎ ŀǘ ǘƘŜ ǎŀƳŜ ŀƴƎƭŜ ŀǎ ǘƘŀǘ ƭƛƴƪ ǎŜƎƳŜƴǘΦ

As a practical matter most link templates consist of a LinkPanel holding a LinkShape and some varying

number of decorations positioned along the link path.

Setting the Part.SelectionElementName attached property indicates which element should get a selection

handle when the part becomes selected. In this case the link shape will get the selection handle, which is

what you would normally want. If you did not set the SelectionElementName, the user would see a big

Rectangle surrounding the whole link, which is probably not what you want.

¸ƻǳ Ŏŀƴ ƘŀǾŜ ŀǎ Ƴŀƴȅ ŀǊǊƻǿƘŜŀŘǎ ŀǎ ȅƻǳ ƭƛƪŜΦ CƻǊ ŜȄŀƳǇƭŜΣ ƘŜǊŜΩǎ ŀ ŘƻǳōƭŜ-headed link:

<DataTemplate x: Key="LinkTemplate9">

 <go: LinkPanel go: Part.SelectionElementName ="Path">

 <go: LinkShape x: Name="Path" go: LinkPanel.IsLinkShape ="True"

 Stroke ="Black" StrokeThickness ="1" />

 <! -- the ñtoò arrowhead -- >

 <Polygon Fill ="Black" Points ="8 4 0 8 2 4 0 0"

 go: LinkPanel.Alignment ="1 0.5" go: LinkPanel.Index =" - 1"

 go: LinkPanel.Orientation ="Along" />

 <! -- the ñfromò arrowhead -- >

 <Polyline Stroke ="Black" StrokeThickness ="1"

 Points ="7 0 0 3.5 7 7"

 go: LinkPanel.Alignment ="0 0.5" go: LinkPanel.Index ="0"

 go: LinkPanel.Orientation ="Along" />

 </ go: LinkPanel >

</ DataTemplate >

This might look like:

With this mechanism you can implement any arrowhead that you like. The arrowhead element need not be

a Polygon ōǳǘ Ŏŀƴ ōŜ ŀǎ ŎƻƳǇƭƛŎŀǘŜŘ ŀǎ ȅƻǳ ǿŀƴǘΦ IƻǿŜǾŜǊΣ ǘƘƛǎ ƎŜƴŜǊŀƭ ƳŜŎƘŀƴƛǎƳ ƛǎƴΩǘ ǎƻ ŎƻƴǾŜƴƛŜƴǘ ǘƻ

use.

Therefore we have predefined a number of common arrowheads. You have to provide a Path element as an

immediate child of the LinkPanel, and naturally you can specify its Fill and Stroke properties. Then you can

just set the attached property LinkPanel.ToArrow. For example, the following XAML is the same as the

ŀōƻǾŜ άǘƻέ ŀǊǊƻǿƘŜŀŘ element:

 <Path Fill ="Black" go: LinkPanel.ToArrow ="Standard" />

You can also change the size of the arrowhead by setting the LinkPanel.ToArrowScale attached property.

And you can also set FromArrow and FromArrowScale.

All of the arrowheads are shown by the Arrowheads sample. Note that this screenshot may be out-of-date;

look at the Arrowhead enumerated type for the complete list.

Of course link templates can be complicated too. If you are using a GraphLinksModel, you can bind to the

link data. [ŜǘΩǎ ŀdd a text element with a white background:

<DataTemplate x: Key="LinkTemplate3" >

 <go: LinkPanel go: Part.SelectionElementName ="Path"

 go: Part.SelectionAdorned ="True">

 <go: LinkShape x: Name="Path" go: LinkPanel.IsLinkShape ="True"

 Stroke ="Black" StrokeThickness ="1" />

 <! -- the arrowhead -- >

 <Polygon Fill ="Black" Points ="8 4 0 8 2 4 0 0"

 go: LinkPanel.Alignment ="1 0.5" go: LinkPanel.Index =" - 1"

 go: LinkPanel.Orientation ="Along" />

 <! -- when using a GraphLinksModel , bind to MyLinkData.Cost as a label -- >

 <StackPanel Background ="White">

 <TextBlock Text ="{ Binding Path =Data.Cost}" Foreground ="Blue" />

 </ StackPanel >

 </ go: LinkPanel >

</ DataTemplate >

This makes use of a MyLinkData type that you might define with a Cost property:

[Serializable] // serializable only for WPF

public class MyLinkData : GraphLinksModelLinkData <String , String > {

 public double Cost {

 get { return _Cost; }

 set {

 if (_Cost != value) {

 double old = _Cost;

 _Cost = value ;

 RaisePropertyChanged("Cost" , old, value);

 }

 }

 }

 private double _Cost;

}

If you expect the link data not to change and need to update the diagram, you could have a simpler

implementation of the link data class:

[Serializable] // serializable only for WPF

public class MyLinkData : GraphLinksModelLinkData <String , String > {

 public double Cost { get ; set; } // i f setter does not need to notify

}

The result might look like:

Data Binding to Link Nodes

The example above performed data binding of a TextBlockΩǎ Text property to a property on the LinkΩǎ Data

(an instance of MyLinkData). However, it is also possible to data bind link properties to properties on either

of the LinkΩǎ ŎƻƴƴŜŎǘŜŘ Nodes. This will work even if the model does not support separate link data.

For instance, if you want each link to be colored according to some ǇǊƻǇŜǊǘȅ ƻŦ ǘƘŜ ά¢ƻέ ƴƻŘŜΣ ȅƻǳ Ŏŀƴ ōƛƴŘ

the Stroke to { Binding Path =Link.ToData.SomeProperty, Converter ={ StaticResource

someConverter }} .

CƻǊ ŜȄŀƳǇƭŜΣ ǿŜ Ŏŀƴ ŎǳǎǘƻƳƛȊŜ ǘƘŜ ƭƛƴƪ ŎƻƭƻǊǎ ƻŦ ǘƘŜ 5ƻǳōƭŜ¢ǊŜŜ ǎŀƳǇƭŜ ōȅ ŎƘŀƴƎƛƴƎ ǘƘŜ ƭƛƴƪΩǎ ǘŜƳǇƭŀǘŜ ǘƻ

depend on the Info.LayoutId property, where Info is a node data class defined in that sample, and where

the LayoutId property indicates which direction the tree is growing at that node.

<local : LinkBrushConverter x: Key="theLinkBrushConverter" />

<DataTemplate x: Key="LinkTemplate">

 <go: LinkPanel >

 <go:LinkShape StrokeThickness ="1"

 Stroke ="{ Binding Path =Link.ToData.LayoutId,

 Converter ={ StaticResource theLinkBrushConverter }}" />

 <Polygon Fill ="{ Binding Path =Link.ToData.LayoutId,

 Converter ={ StaticResource theLinkBrushConverter }}"

 Points ="8 4 0 8 2 4 0 0" go: LinkPanel.Index =" - 1"

 go: LinkPanel.Alignment ="1 0.5" go: LinkPanel.Orientation ="Along" />

 </ go: LinkPanel >

</ DataTemplate >

Note that in this example both the Path.Stroke and the Polygon.Fill are bound to the same data property

using the same converter.

The LinkBrushConverter needs to convert the string value of Info.LayoutId to the desired Brush. This is an

example of defining your own custom data converter:

 public class LinkBrushConverter : Northwoods.GoXam. Converter {

 public override object Convert(object value, Type targetType,

 object parameter, System.Globalization. Cultur eInfo culture) {

 if (value is String) {

 switch ((String)value) {

 case "Right" : return Black;

 case "Left" : return Red;

 case "Up" : return Green;

 case "Down" : return Blue;

 default : return Black;

 }

 }

 return Black;

 }

 private static Brush Black = new SolidColorBrush (Colors .Black);

 private static Brush Red = new SolidColorBrush (Colors .Red);

 private static Brush Green = new SolidColorBrush (Colors .Green);

 private static Brush Blue = new SolidColorBrush (Colors .Blue);

 }

For efficiency this example converter only returns one of four predefined solid brushes that are shared.
However, it is common to return a new SolidColorBrush when the color is more variable. In any case,
this is what the results might look like:

Link Routes

So far all of the example links have been fairly simple. If you want to customize the path that each link

ǘŀƪŜǎΣ ȅƻǳ ƴŜŜŘ ǘƻ ǎŜǘ ǇǊƻǇŜǊǘƛŜǎ ƻƴ ǘƘŜ ƭƛƴƪΩǎ Route. Each Link has a Route that it creates by default, but

you can replace it with one that you have initialized.

<DataTemplate x: Key="LinkTemplate4" >

 <go: LinkPanel go: Part.SelectionElementName ="Path"

 go: Part.SelectionAdorned ="True">

 <go: Link.Route >

 <go: Route Routing ="Orthogonal" />

 </ go: Link.Route >

 <go: LinkShape x: Name="Path" go: LinkPanel.IsLinkShape ="True"

 Stroke ="Black" StrokeThickness ="1" />

 <Polygon Fill ="Black" Points ="8 4 0 8 2 4 0 0"

 go: LinkPanel.Alignment ="1 0.5" go: LinkPanel.Index =" - 1"

 go: LinkPanel.Orientation ="Along" />

 </ go: LinkPanel >

</ DataTemplate >

The Route.Routing property controls what general route the link will take. The default value is

LinkRouting.Normal, which produces the direct paths you have seen so far. But if you use

LinkRouting.Orthogonal, which tries to make each segment of the link either horizontal or vertical, it might

look like:

Another routing option assumes orthogonal segments for the link, but also tries to avoid crossing over other

nodes.

 <go: Link.Route >

 <go: Route Routing ="AvoidsNodes" />

 </ go: Link.Route >

After adding two nodes to be in the way:

The Route.Curve property specifies what kind of path to draw given the points calculated for the route. The

default value is LinkCurve.None, which produces the straight line segments you have seen in the examples

so far. The LinkCurve.Bezier value produces naturally curved paths.

 <go: Link.Route >

 <go: Route Curve ="Bezier" />

 </ go: Link.Route >

You can control the amount of curvature by setting the Route.Curviness property. With varying numbers of

links between the same pair of nodes it will automatically compute values for Curviness unless you assign it

explicitly.

Combining orthogonal Routing and Corner:

 <go: Link.Route >

 <go: Route Routing ="Orthogonal" Corner =" 10" / >

 </ go: Link.Route >

produces:

Or use Curve.JumpOver with LinkRouting.Orthogonal or AvoidsNodes:
 <go: Link.Route >

 <go: Route Routing ="Orthogonal" Curve ="JumpOver" Corner ="10" />

 </ go: Link.Route >

Link Labels

It is common to add annotations or decorations to links, particularly text. You can easily add any elements

you want to a LinkPanel. For example, let us add three text labels to a link, one in the middle, one on the

left side of the link and one on the right side of the link:

<DataTemplate x: Key="LinkTemplate5">

 <go: LinkPanel >

 <go: LinkShape Stroke ="Black" StrokeThickness ="1" />

 <Polygon Fill ="Black" Points ="8 4 0 8 2 4 0 0" go: LinkPanel.Index =" - 1"

 go: LinkPanel.Alignment ="1 0.5" go: LinkPanel.Orientation ="Along" />

 <TextBlock Text ="Left"

 go: LinkPanel.Offset ="0 - 10" go: LinkPanel.Orientation ="Upright" />

 <TextBlock Text ="Middle"

 go: LinkPanel.Offset ="0 0" go: LinkPanel.Orientation ="Upright" />

 <TextBlock Text ="Right"

 go: LinkPanel.Offset ="0 10" go: LinkPanel.Orientation ="Upright" />

 </ go: LinkPanel >

</ DataTemplate >

The LinkPanel.Offset attached property controls where to position the element relative to a point on a

segment of the link. A positive value for the Y offset moves the label element towards the right side of the

link, as seen going in the direction of the link. Naturally a negative value for the Y offset moves it towards

the left side.

The segment is specified by the LinkPanel.Index attached property, which defaults to the middle of the

whole link. The offset is rotated according to the angle formed by that link segment. Here are the results,

with the nodes at different relative positions to demonstrate how the labels follow the (only) segment of the

link.

The LinkPanel.Orientation attached property controls the angle of the label relative to the angle of the link

segment. The value of Along, as you have seen above with arrowheads, results in a label angle that is the

ǎŀƳŜ ŀǎ ǘƘŜ ǎŜƎƳŜƴǘΩǎ ŀƴƎƭŜΦ ¢ƘŜ ǾŀƭǳŜ ƻŦ Upright is useful for elements containing text because the text

will not be upside down, although like Along it will always be angled to follow the link. To continue the

counter-clockwise rotation of the Beta node around the Alpha node:

When you specify the LinkPanel.Index, you can position labels at places other than the middle of the link.

The index of zero is at the very beginning of the link; a value of one is at the next point in the route.

Negative values are permitted ς ǘƘŜȅ Ŏƻǳƴǘ Řƻǿƴ ŦǊƻƳ ǘƘŜ άǘƻέ ŜƴŘ ƻŦ ǘƘŜ ƭƛƴƪ, with index -1 at the very last

point of the link.

 <TextBlock Text ="From" go: LinkPanel.Index ="0"

 go: LinkPanel.Offset ="NaN NaN" go: LinkPanel.Orientation ="Upright" />

 <TextBlock Text ="To" go: LinkPanel.Index =" - 1"

 go: LinkPanel.Offset ="NaN NaN" go: LinkPanel.Orientation ="Upright" />

The uses of NaN in the Offset mean half the width and half the height of the label element, which is

convenient when the size of the label element may vary.

Links need not be straight with a single segment. Here are examples of Orthogonal routing and of Bezier

curves, with the middle label having two lines of text:

Labels need not be TextBlocks. The default LinkPanel.Orientation is None, meaning that the label element

is not rotated at all. For example:

 <! -- LinkPanel labels in Silverlight -- >

 <go: NodePanel go: LinkPanel.Index ="0" go: LinkPanel.Offset ="5 5" >

 <go: NodeShape go: NodePanel.Figure ="EightPointedStar" Fill ="Red"

 Width ="10" Height ="10" />

 </ go: NodePanel >

 <Button Content ="?" Click ="Button_Click" />

 <! -- LinkPanel labels in WPF -- >

 <go: NodeShape go: LinkPanel.Index ="0" go: LinkPanel.Offset ="5 5"

 go: NodePanel.Figure ="EightPointedStar" Fill ="Red"

 Width ="10" Height ="10" />

 <Button Content ="?" Click ="Button_Click" />

Link Connection Points on Nodes
In the examples above you have seen how each link will end at the edge of the node. To illustrate this

further, notice in the following screenshot where the arrowheads appear to terminate ŀǊƻǳƴŘ ǘƘŜ ά!ƭǇƘŀέ

node, around the rectangular bounds of the text:

If the node is not shaped like a rectangle, the link will connect at the edge.

<DataTemplate x: Key="NodeTemplate 1">

 <go: NodePanel go: Node.SelectionAdorned ="True">

 <go: NodeShape go: NodePanel .Figure ="OrGate" Width ="70" Height ="70"

 Stroke ="Black" StrokeThickness ="1"

 Fill ="{ Binding Path =Data.Color,

 Converter ={ StaticResource theStringBrushConverter }}" />

 <TextBlock Text ="{ Binding Path =Data.Key}" TextAlignment ="Center"

 HorizontalAlignment ="Center" VerticalAlignment ="Center" />

 </ go: NodePanel >

</ DataTemplate >

But what if you want to limit the points at which links may connect to a node? You can do so by setting the

Node.FromSpot and Node.ToSpot attached properties on the root visual element of the node. The default

value is Spot.None, which means to calculate a point along the edge of the element. But you can specify

spot values that describe particular positions on the element. For example:

<DataTemplate x: Key="NodeTemplate2" >

 <TextBlock Text ="{ Binding Path =Data.Key}" go: Node.SelectionAdorned ="True"

 go: Node.ToSpot ="MiddleLeft" go: Node.FromSpot ="MiddleRight" />

</ DataTemplate >

This specifies that links coming into this node connect at the middle of the left side, and that links going out

of this node connect at the middle of the right side. Such a convention is appropriate for diagrams that have

a general sense of direction to them, such as the following one which goes from left to right:

You can also specify that the links go into a node not at a single spot but spread out along one side. Change

the previous example to use:

 go: Node.ToSpot ="LeftSide" go: Node.FromSpot ="RightSide"

And you will get:

Of course specifying a side works well only for nodes that are basically rectangular and probably larger than

ƛƴ ǘƘƛǎ ŎŀǎŜΦ {ƻ ƭŜǘΩǎ ŀŘŘ ŀ ōƻǊŘŜǊ ŀǊƻǳƴŘ ǘƘŜ ǘŜȄǘ to make each node bigger:

<DataTemplate x: Key="NodeTemplate 3">

 <Border BorderBrush ="Black" BorderThickness ="1" Padding ="3"

 go: Node.SelectionAdorned ="True"

 go: Node.ToSpot ="LeftSide" go: Node.FromSpot ="RightSide" >

 <TextBlock Text ="{ Binding Path =Data.Key}" />

 </ Border >

</ DataTemplate >

Note how the attached node properties have been moved to the new root element of the data template.

This node template with the same data results in:

Of course you can use different kinds of Routes for the link template. Consider:

 <go: Link.Route >

 <go: Route Curve ="Bezier" />

 </ go: Link.Route >

Or:

 <go: Link.Route >

 <go: Route Routing ="Orthogonal" Corner =" 10" />

 </ go: Link.Route >

Ports on Nodes

Although you have some control over where links will connect at a node (at a particular spot, along one or

more sides, or at the intersection with the edge), there are times when you want to have different logical

and graphical places at which links should connect. The elements to which a link may connect are called

ports. There may be any number of ports in a node. By default there is just one port, the root visual

element, which results in the effect of having the whole node act as the port, as you have seen above.

Support for multiple ports is only possible in a GraphLinksModel because only when you have separate data

for each link can you attach information describing which port the link should connect to.

To declare that a particular element is a port, set the Node.PortId attached property on it. Unlike most of

the Part and Node attached properties, which may only be applied to the root visual element of the node,

the port-related Node attached properties may apply to any element in the visual tree of the node. These

ŀǘǘŀŎƘŜŘ ǇǊƻǇŜǊǘƛŜǎ ƘŀǾŜ ƴŀƳŜǎ ǘƘŀǘ ǎǘŀǊǘ ǿƛǘƘ άtƻǊǘέΣ άCǊƻƳέΣ ά¢ƻέΣ ƻǊ ά[ƛƴƪŀōƭŜέΦ

<DataTemplate x: Key="NodeTemplate 4" >

 <Border BorderBrush ="Black" BorderThickness ="1"

 go: Node.SelectionAdorned ="True">

 <Grid Background ="LightGray">

 <Grid.ColumnDefinitions >

 <ColumnDefinition Width ="Auto" />

 <ColumnDefinition Width ="*" />

 <ColumnDefinition Width ="Auto" />

 </ Grid.ColumnDefinitions >

 <Grid.RowDefinitions >

 <RowDefinition Height ="Auto" />

 <RowDefinition Height ="*" />

 <RowDefinition Height ="*" />

 </ Grid.RowDefinitions >

 <TextBlock Grid.Column ="0" Grid.Row ="0" Grid.ColumnSpan ="3"

 Text ="{ Binding Path =Data.Key}" TextAlignment ="Center"

 FontWeight ="Bold" TextWrapping ="Wrap" Margin ="4,4,4,2" />

 <StackPanel Grid.Column ="0" Grid.Row ="1" Orientation ="Horizontal">

 <! -- this Rectangle is a port, identified with the string ñAò;

 links only come into it at the middle of the left side -- >

 <Rectangle Width ="6" Height ="6" Fill ="Black"

 go: Node.PortId ="A" go: Node.ToSpot ="MiddleLeft" />

 <TextBlock Text ="A" />

 </ StackPanel >

 <StackPanel Grid.Column ="0" Grid.Row ="2" Orientation ="Horizontal">

 <! -- this Rectangle is another input port , named ñBò -- >

 <Rectangle Width ="6" Height ="6" Fill ="Black"

 go: Node.PortId ="B" go: Node.ToSpot ="MiddleLeft" />

 <TextBlock Text ="B" />

 </ StackPanel >

 <StackPanel Grid.Column ="2" Grid.Row ="1" Grid.RowSpan ="2"

 Orientation ="Horizontal" VerticalAlignment ="Center">

 <TextBlock Text ="Out" />

 <! -- this Rectangle is another port, identified with the string ñOutò;

 links only go out of it at the middle of the right side -- >

 <Rectangle Width ="6" Height ="6" Fill ="Black"

 go: Node.PortId ="Out" go: Node.FromSpot ="MiddleRight" />

 </ StackPanel >

 </ Grid >

 </ Border >

</ DataTemplate >

Each port has a Node.PortId that corresponds to the optional port parameter information at both ends of

each link. To avoid visual confusion in this example there is also a TextBlock next to each port, showing the

same string.

This node template, combined with a GraphLinksModel and data such as:

 var model = new GraphLinksModel <MyData , String , String , MyLinkData >();

 model.NodesSource = new ObservableCollection <MyData >() {

 new MyData () { Key= "Add1" },

 new MyData () { Key= "Add2" },

 new MyData () { Key= "Subtract" },

 };

 model.LinksSource = new ObservableCollection <MyLinkData >() {

 new MyLinkData () { From= "Add1" , FromPort= "Out" , To= "Subtract" , ToPort= "A" },

 new MyLinkData () { From= "Add2" , FromPort= "Out" , To= "Subtract" , ToPort= "B" },

 };

 myDiagram.Model = model;

can produce a diagram like:

Data Templates for Groups
To define the appearance of group nodes, you can set the Diagram.GroupTemplate property. The default

template produces the following simple representation of a grouǇΣ ƛƴ ǘƘƛǎ ŎŀǎŜ ά9ǇǎƛƭƻƴέΦ

To customize the appearance of a group, you could define a template such as:

<DataTemplate x: Key="GroupTemplate 1">

 <StackPanel go: Node.LocationElementName ="myGroupPanel">

 <! -- This is the ñheaderò for the group -- >

 <TextBlock x: Name="Label" Text ="{ Binding Path =Data.Key}"

 FontSize ="18" FontWeight ="Bold" Foreground ="Green"

 HorizontalAlignment ="Center"/>

 <Border x: Name="myBorder" CornerRadius ="5"

 BorderBrush ="Green" BorderThickness ="2">

 <! -- The GroupPanel is the placeholder for member parts -- >

 <go: GroupPanel x: Name="myGroupPanel" Padding ="5" />

 </ Border >

 <! -- This is some extra information for the group -- >

 <TextBlock Text ="BottomRight" HorizontalAlignment ="Right" />

 </ StackPanel >

</ DataTemplate >

Notice that there is a GroupPanel element inside the Border. You use a GroupPanel as the placeholder for

all of the nodes and links that are members of the group. The member Nodes and Links are not visual

children of the panel or of the group node ς they are independent parts in the diagram.

If you use a GroupPanel, and if it is not the root visual element of the data template, it must be named as

the Node.LocationElementName for the group. Just give the GroupPanel a Name and refer to it via the

attached property Node.LocationElementName on the root element. This means that the NodeΩs location

will always be the same as the GroupPanelΩǎ ƭƻŎŀǘƛƻƴΣ ŜǾŜƴ ŀǎ ŜƭŜƳŜƴǘǎ ƻǳǘǎƛŘŜ ƻŦ ǘƘŜ GroupPanel change

size or move around with respect to the panel.

<DataTemplate x: Key="GroupTemplate2">

 <Border x: Name="myBorder" CornerRadius ="5"

 BorderBrush ="Green" BorderThickness ="2"

 go: Node.LocationElementName ="myGroupPanel">

 <StackPanel >

 <TextBlock x: Name="Label" Text ="{ Binding Path =Data.Key}"

 FontSize ="16" FontWeight ="Bold" Foreground ="Green"

 HorizontalAlignment ="Center" />

 <go: GroupPanel x: Name="myGroupPanel" Padding ="5" />

 <TextBlock Text ="BottomRight" FontSize ="7"

 HorizontalAlignment ="Right" />

 </ StackPanel >

 </ Border >

</ DataTemplate >

The second ǎŎǊŜŜƴǎƘƻǘ ǎƘƻǿǎ ǘƘŜ ǊŜǎǳƭǘ ƻŦ ŘǊŀƎƎƛƴƎ ǘƘŜ άDŀƳƳŀέ ƴƻŘŜ ŘƻǿƴǿŀǊŘ ŀ ōƛǘΦ

A GroupPanel always encloses its member NodeǎΣ ŜǾŜƴ ǿƘƛƭŜ ǘƘŜ ƴƻŘŜǎ ŀǊŜ ōŜƛƴƎ ŘǊŀƎƎŜŘΦ LŦ ȅƻǳ ŘƻƴΩǘ

want this behavior during dragging, for example in order to permit a Node to be dragged outside of its

Group, you can set GroupPanel.SurroundsMembersAfterDrop to true. This changes the behavior of the

GroupPanel so that it does not resize during a drag until the drop is completed.

Collapsing and Expanding SubGraphs

It is common to simplify graphs by collapsing subgraphs into a single node. One way to implement

collapsible subgraphs is with a button.

<! -- show either a "+" or a " - " as the Button content -- >

<go: BooleanStringConverter x: Key="theButtonConverter"

 TrueString =" - " FalseString ="+" />

<DataTemplate x: Key="GroupTemplate">

 <Border CornerRadius ="5" BorderThickness ="2" Background ="Transparent"

 BorderBrush ="{ Binding Path =Data.Color,

 Converter ={ StaticResource theBrushConverter }}"

 go: Part.SelectionAdorned ="True"

 go: Node.LocationElementName ="myGroupPanel"

 go: Group.IsSubGraphExpanded ="False">

 <! -- go: Group.IsSubGraphExpanded ="False" causes it to start collapsed -- >

 <StackPanel >

 <StackPanel Orientation ="Horizontal" HorizontalAlignment ="Left">

 <Button x: Name="myCollapseExpandButton"

 Click ="CollapseExpandButton_Click"

 Content ="{ Binding Path =Group.IsExpandedSubGraph,

 Converter ={ StaticResource theButtonConverter }}"

 Width ="20" Margin ="0 0 5 0"/>

 <TextBlock Text ="{ Binding Path =Data.Key}" FontWeight ="Bold" />

 </ StackPanel >

 <go: GroupPanel x: Name="myGroupPanel" Padding ="5" />

 </ StackPanel >

 <! -- each Group can have its own Layout -- >

 <go: Group.Layout >

 <! -- this Layout is performed whenever any nested Group changes size -- >

 <go: LayeredDigraphLayout Direction ="90"

 Conditions ="Standard GroupSizeChanged" />

 </ go: Group.Layout >

 </ Border >

</ DataTemplate >

Note that the Button.Content is bound to the Group.IsExpandedSubGraph property, via a converter that

ŎƻƴǾŜǊǘǎ ǘƘŜ ōƻƻƭŜŀƴ ǾŀƭǳŜ ǘƻ ŜƛǘƘŜǊ ǘƘŜ ǎǘǊƛƴƎ άҌέ ƻǊ ǘƘŜ ǎǘǊƛƴƎ ά-άΦ

Collapsed it might appear as:

The Button.Click event handler might be defined as:

private void CollapseExpandButton_Click(object sender, RoutedEventArg s e) {

 // the Button is in the visual tree of a Node

 Button button = (Button)sender;

 Group sg = Part .FindAncestor< Group >(button);

 if (sg != null) {

 SimpleData subgraphdata = (SimpleData)sg.Data;

 // always make changes within a transaction

 myDiagram.StartTransaction("CollapseExpand");

 // toggle whether this node is expanded or collapsed

 sg.IsExpandedSubGraph = !sg.IsExpandedSubGraph;

 myDiagram.CommitTransaction("CollapseExpand");

 }

}

Expanded it might look like:

A ƳƻǊŜ άǎǘŀƴŘŀǊŘέ implementation for a Group might use an Expander:

<DataTemplate x: Key="GroupTemplate6">

 <Expander Header ="{ Binding Path =Data.Name}"

 IsExpanded ="{ Binding Path =Group.IsExpandedSubGraph, Mode=TwoWay}"

 go: Node.LocationElementName ="myGroupPanel">

 <Border BorderBrush ="Green" BorderThickness ="2"

 Background ="Transparent" CornerRadius ="5">

 <go: GroupPanel x: Name="myGroupPanel" Padding ="6" />

 </ Border >

 </ Expander >

</ DataTemplate >

Note how the Expander.IsExpanded property is data-bound to Group.IsExpandedSubGraph.

Groups with Ports

The previous examples did not treat groups as nodes in their own right. As with regular Nodes, a link to a

Group ǿƛƭƭ ōȅ ŘŜŦŀǳƭǘ ǘǊŜŀǘ ǘƘŜ ǿƘƻƭŜ ƴƻŘŜ ŀǎ ǘƘŜ ƻƴƭȅ άǇƻǊǘέΦ CƻǊ ŜȄŀƳǇƭŜΣ ŎƻƴƴŜŎǘƛƴƎ ά!ƭǇƘŀέ ǘƻ ά9Ǉǎƛƭƻƴέ

όƛƴǎǘŜŀŘ ƻŦ ǘƻ άDŀƳƳŀέύ ŀƴŘ ά9Ǉǎƛƭƻƴέ όƛƴǎǘŜŀŘ ƻŦ ά5Ŝƭǘŀέύ ǘƻ ά.Ŝǘŀέ ƳƛƎƘǘ ǊŜǎǳƭǘ ƛƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ

screenshot. The ά!ƭǇƘŀέ ŀƴŘ ά.Ŝǘŀέ ƴƻŘŜǎ ƘŀǾŜ ōŜŜƴ Ƴoved to make clearer the connections to the group.

The following example gives group nodes three ports on the left and two on the right, spaced equally within

the thick border. The input ports on the left ŀǊŜ ƴŀƳŜŘ άȊŜǊƻέΣ άƻƴŜέΣ ŀƴŘ άǘǿƻέΤ ǘƘŜ ƻǳǘǇǳǘ ǇƻǊǘǎ on the

right ŀǊŜ ƴŀƳŜŘ άhǳǘ!έ ŀƴŘ άhǳǘ.έΦ This example has no text labels to visually name each port.

<DataTemplate x: Key="GroupTemplate3 ">

 <Border x: Name="myBorder" CornerRadius ="5"

 BorderB rush ="LightGreen" BorderThickness ="10"

 go: Node.LocationElementName ="myGroupPanel">

 <go: GroupPanel x: Name="myGroupPanel" Padding ="10 5 10 5" Margin ="0 20 0 0" >

 <TextBlock x: Name="Label" go: Node.PortId =""

 Text ="{ Binding Path =Data.Key}" FontSize ="14" Foreground ="Navy"

 go: SpotPanel.Spot ="1 0 0 - 2" go: SpotPanel.Alignment ="1 1" />

 <Rectangle go: SpotPanel.Spot ="0 0.25" go: SpotPanel.Alignment ="1 0.5"

 Fill ="Blue" Width ="10" Height ="10" go: Node.PortId ="zero" />

 <Rectangle go: SpotPanel.Spot ="0 0.50" go: SpotPanel.Alignment ="1 0.5"

 Fill ="Blue" Width ="10" Height ="10" go: Node.PortId ="one" />

 <Rectangle go: SpotPanel.Spot ="0 0.75" go: SpotPanel.Alignment ="1 0.5"

 Fill ="Blue" Width ="10" Height ="10" go: Node.PortId ="two" />

 <Rectangle go: SpotPanel.Spot ="1 0.33" go: SpotPanel.Alignment ="0 0.5"

 Fill ="Orange" Width ="10" Height ="10" go: Node.PortId ="OutA" />

 <Rectangle go: SpotPanel.Spot ="1 0.67" go: SpotPanel.Alignment ="0 0.5"

 Fill ="Orange" Width ="10" Height ="10" go: Node.PortId ="OutB" />

 </ go: GroupPanel >

 </ Border >

</ DataTemplate >

This diagram was created with the same node data as before but with the following link data:

 model.LinksSource = new ObservableCollection <MyLinkData >() {

 new MyLinkData () { From= "Alpha" , To= "Epsilon" , ToPort= "two" },

 new MyLinkData () { From= "Gamma", To= "Delta" },

 new MyLinkData () { From= "Epsilon" , To= "Beta" , FromPort= "OutA" },

 };

Groups as Independent Containers

The above examples all intend to have each group exactly surround its collection of member nodes plus

some padding. However, there are other scenarios where you want to treat each group as a fixed size box

where the user might add or remove items (i.e. nodes) via drag-and-drop.

<DataTemplate x: Key="GroupTemplate Fixed Size ">

 <StackPanel go: Node.LocationElementName ="main"

 go: Part.SelectionElementName ="main"

 go: Part.SelectionAdorned ="True"

 go: Part.DropOntoBehavior ="AddsToGroup">

 <TextBlock Text ="{ Binding Path =Data.Key}" FontWeight ="Bold"

 HorizontalAlignment ="Left" />

 <Rectangle x: Name="main" Fill ="White" StrokeThickness ="3"

 Stroke ="{ Binding Path =Part.IsDropOntoAccepted,

 Converter ={ StaticResource theStrokeChooser }}"

 Width ="100" Height ="100" />

 </ StackPanel >

</ DataTemplate >

Note the addition of go: Part.DropOntoBehavior ="AddsToGroup" Φ ¸ƻǳ Ŏŀƴ ŜƴŀōƭŜ άŘǊƻǇ ƻƴǘƻέ

behavior by adding this attached property on groups and by also setting DraggingTool.DropOntoEnabled to

true:

<go: Diagram Grid.Row ="0" . . . >

 <go: Diagram.DraggingTool >

 <go: DraggingTool DropOntoEnabled ="True" />

 </ go: Diagram.DraggingTool >

</ go: Diagram >

This will allow users to drag nodes into and out of this rectangular box. When the drop occurs, the nodes

become members of the group. That means that copying the group will also copy the members, and that

deleting the group will also delete the members. Dragging a node out of such a group also removes it from

that group ς copying or deleting the group will have no effect on the dragged node.

To help provide feedback to the user, note the binding of the Rectangle.Stroke on the

Part.IsDropOntoAccepted property. The DraggingTool will temporarily set that Part property during the

dragging process if the dragged nodes might be added to that Group. You can override the

DraggingTool.IsValidMember predicate to return false if you do not want a particular node to become a

member of a particular group. For example, in the Planogram sample, IsValidMember is defined to return

false when the dragged node is a Rack or a Shelf, to prevent nesting of Racks or Shelves.

The Planogram sample also demonstrates how these groups can be resizable by the user. Because the

template is not using a GroupPanel, there are no inherent limits on where the group appears to be relative

to its member nodes.

However, there may be times when you want to use a GroupPanel most of the time, but you still want to

support drag-and-drop re-parenting of nodes between groups. The problem with the use of a GroupPanel is

that as the user tries to drag a member node out of a group, the group automatically expands to include its

member node. In this particular case you can use a GroupPanel when you also set its

SurroundsMembersAfterDrop property to true. Basically the auto-sizing behavior of a GroupPanel is

temporarily disabled during a move conducted by the DraggingTool.

<DataTemplate x: Key="GroupTemplateAddableRemovable">

 <StackPanel go: Node.LocationElementName ="main"

 go: Part.SelectionElementName ="main"

 go: Part.SelectionAdorned ="True"

 go: Part.DropOntoBehavior ="AddsToGroup">

 <TextBlock Text ="{ Binding Path =Data.Key}" FontWeight ="Bold"

 HorizontalAlignment ="Left" />

 <Border Background ="White" BorderThickness ="3" CornerRadius ="5"

 BorderBrush ="{ Binding Path =Part.IsDropOntoAccepted,

 Converter ={ StaticResource theStrokeChooser }}">

 <go: GroupPanel x: Name="main" SurroundsMembersAfterDrop ="True"

 MinWidth ="100" MinHeight ="100" />

 </ Border >

 </ StackPanel >

</ DataTemplate >

Layout
The positioning of FrameworkElements in Nodes is achieved with the standard WPF/Silverlight layout

system, primarily the use of various kinds of Panels.

In GoXam diagrams, you can position a node by setting or data-binding in XAML the Node.Location attached

property on its root visual element, or by setting programmatically the Node.Location property. And users

can reposition a node by dragging it.

However, there are also some automated means of positioning the nodes. These are implemented by

several DiagramLayout classes, primarily: GridLayout, CircularLayout, TreeLayout, ForceDirectedLayout,

and LayeredDigraphLayout. Any layout can work with any kind of model.

A layout can be associated with a whole diagram by setting the Diagram.Layout property.

<go: Diagram . . . >

 <go: Diagram.Layout >

 <go: TreeLayout . . . />

 </ go: Diagram.Layout >

</ go: Diagram >

A layout can also be associated with a Group by setting the Group.Layout attached property. If a Group has

a layout, that layout will only position the members (nodes and links) of the group, and the DiagramΩǎ ƭŀȅƻǳǘ

will not operate on those members but will treat the group as a single node.

Because there may be many layouts present in a diagram, the Diagram.LayoutManager is responsible for

managing them, including deciding when they need to run again. By default there are a number of events

that may cause a re-layout. These cases are specified by the LayoutChange enumeration, such as

LayoutChange .NodeAdded or LayoutChange .LinkRemoved.

Each DiagramLayout has a Conditions property that governs which LayoutChanges will cause a re-layout.

The default behavior is to perform another layout when any node, link, or group membership is added or

removed, or when a Layout is replaced or when a template is replaced. LŦ ȅƻǳ ŘƻƴΩǘ ǿŀƴǘ ŀ ƭŀȅƻǳǘ ǘƻ

happen when users delete nodes or links, you could say:

 <go: TreeLayout Conditions ="NodeAdded LinkAdded" . . . />

Then only when the user adds a node or draws a new link (or reconnects an existing one) will a layout

automatically occur.

The most commonly set properties on LayoutManager involve animation. By default the

LayoutManager.Animated property is true, so that each layout will cause top-level nodes to move smoothly

from their original location to their new one. (Nodes that are members of groups will move instantly.) The

default animation time is 500 milliseconds.

<go: Diagram . . . >

 <go: Diagram.LayoutManager >

 <go: LayoutManager Animat ionTime =" 1000" />

 </ go: Diagram.LayoutManager >

 <go: Diagram.Layout >

 <go: TreeLayout . . . />

 </ go: Diagram.Layout >

</ go: Diagram >

Normally all of the nodes and links in the diagram are laid out by the Diagram.Layout. You can cause a node

or link not to participate in a layout by setting its Part.LayoutId ǇǊƻǇŜǊǘȅ ǘƻ άbƻƴŜέ ƻƴ ǘƘŜ Ǌƻƻǘ ŜƭŜƳŜƴǘ ƻŦ

the node or link template:

 go: Part.LayoutId ="None"

Nodes that are not laid out will not be positioned; links that are not laid out will not be routed specially and

will not be considered when arranging the connected nodes.

TreeLayout

The simplest layout involves tree structures. It is very fast and can handle many nodes.

<go: Diagram . . . >

 <go: Diagram.Layout >

 <go: TreeLayout />

 </ go: Diagram.Layout >

</ go: Diagram >

With a model containing node data forming a tree structure, the result might look like:

There are is a lot of customization possible for trees. Angle controls the general growth direction ς it must

be 0 (towards the right), 90 (downward), 180 (leftward) or 270 (upward). Alignment controls how the

parent node is positioned relative to its children.

 <go: TreeLayout Angle ="90" Alignment ="CenterSubtrees" />

You can control how closely the layers and the nodes are placed. For example, you can really pack them

close together with:

 <go: TreeLayout LayerSpacing ="20" NodeSpacing ="0" />

You can have the children of each node be sorted. By default the TreeLayout.Comparer compares the

Node.Text property. So if the Diagram.NodeTemplate includes:

 go: Part.Text ="{ Binding Path =Data.Key}"

on the root element, and if you specify the TreeLayout.Sorting property:

 <go: TreeLayout Angle ="90" Alignment ="Start" Sorting ="Ascending" />

The set of children for each node is alphabetized. (In this case that means alphabetical ordering of the

English names of the letters of the Greek alphabet.)

If your graph structure is mostly tree-ƭƛƪŜΣ ōǳǘ ȅƻǳ ƘŀǾŜ ŀ ŦŜǿ άŜȄǘǊŀέ ƭƛƴƪǎ ǘƘŀǘ ǎƘƻǳƭŘ ōŜ ƛƎƴƻǊŜŘ ŦƻǊ ǘƘŜ

purpose of deciding the tree structure, you can set the Part.LayoutId attached property on those links to be

άbƻƴŜέΦ

You can experiment with the TreeLayout properties in the TLayout sample of the demo.

ForceDirectedLayout

The ForceDirectedLayout uses forces similar to physical forces to push and pull nodes. Links are treated as if

they were springs of a particular length and stiffness. Each node has an electrical charge that repels other

nodes.

An example of a ForceDirectedLayout:

<go: ForceDire ctedLayout DefaultSpringLength ="10" DefaultElectricalCharge ="50" />

For small nodes that do not have too much connectivity you can use smaller values than the defaults of 50

for the spring length and 150 for the electrical charge.

Unlike the other layouts, ForceDirectedLayout produces incremental results, so running it for longer (i.e.

values of ForceDirectedLayout.MaxIterations > 100) may improve the results.

There are a number of properties that control the behavior of the layout. The ones most commonly set

include Conditions and the 5ŜŦŀǳƭǘΧ properties.

You can experiment with the ForceDirectedLayout properties in the FDLayout sample of the demo.

LayeredDigraphLayout

When the nodes of a graph can be naturally organized into layers but the structure is not tree-like, you can

use LayeredDigraphLayout.

This layout can handle multiple links coming into a node as well as links that create cycles. However, it is

slower than TreeLayout, and it does not have tree-specific customization features.

As with the other layouts, there are a number of properties that control its behavior. The ones most

commonly set include Direction, LayerSpacing, ColumnSpacing, and Conditions.

You can experiment with the LayeredDigraphLayout properties in the LDLayout sample of the demo.

CircularLayout

The CircularLayout positions all of its nodes in a circular or elliptical pattern.

There are a number of properties that control the behavior of the layout. These include how the nodes are

ordered, how they are spaced, the X radius of the ellipse, the aspect ratio of the ellipse, and the start and

sweep angles of the ellipse that are occupied.

You can experiment with the CircularLayout properties in the CLayout sample of the demo.

Selection
Users can typically select and deselect parts by clicking on them or by clicking in the background. You can

programmatically select or deselect a Part by setting its Part.IsSelected property.

The Diagram keeps a collection of selected parts, Diagram.SelectedParts. It also has a reference to the

primary selected part: Diagram.SelectedPart. In order to show detail information about the primary

selection it is natural to bind to Diagram.SelectedPart. If you only want to bind to the primary selection

when it is a Node (and not a Group), bind to Diagram.SelectedNode. Similarly, you can bind to

Diagram.SelectedGroup or Diagram.SelectedLink.

You can limit how many parts are selected by setting Diagram.MaximumSelectionCount.

You can show that a part is selected using either or both of two general techniques: adding Adornments or

changing the appearance of some of the elements of the visual tree.

Selection Adornments

It is common to display that a part is selected by having it show a selection Adornment when the part is

selected. That is accomplished by setting the Part.SelectionAdorned attached property to true:

<DataTemplate x: Key="NodeTemplate1">

 <Grid go: Node.Se lectionAdorned ="True" . . .>

 . . .

 </ Grid >

</ DataTemplate >

 This is the default selection adornment template, which defines what is shown when the part becomes
selected:

<DataTemplate > <! -- Silverlight -- >

 <Path go: NodePanel.Figure ="None" Stroke ="DodgerBlue" StrokeThickness ="3"

 go: Part.Selectable ="False" />

</ DataTemplate >

<DataTemplate > <! -- WPF -- >

 <go: SelectionHandle Stroke ="{ x: Static SystemColors . HighlightBrush }"

 StrokeThickness ="3" go: Part.Selectable ="False" SnapsToDevicePixels ="True" />

</ DataTemplate >

These Adornment shapes automatically take the shape of the FrameworkElement ǘƘŀǘ ƛǎ ǘƘŜ ǎŜƭŜŎǘŜŘ ǇŀǊǘΩǎ
SelectionElement.

But you can customize the elements that are shown when a part is selected by specifying its
SelectionAdornmentTemplate. For example, you can arrange four triangles to be positioned outside of the
adorned element by using a Grid with a SpotPanel in the middle cell:

<DataTemplate x: Key="OuterSelectionAdornmentTemplate">

 <Grid go: Node.LocationElementName ="Main">

 <Grid.ColumnDefinitions >

 <ColumnDefinition Width ="Auto" />

 <ColumnDefinition Width ="Auto" />

 <ColumnDefinition Width ="Auto" />

 </ Grid.ColumnDefinitions >

 <Grid.RowDefinitions >

 <RowDefinition Height ="Auto" />

 <RowDefinition Height ="Auto" />

 <RowDefinition Height ="Auto" />

 </ Grid.RowDefinitions >

 <! -- when in an Adornment , automatically sized to the AdornedElement -- >

 <go: SpotPanel Grid.Row ="1" Grid.Column ="1" x: Name="Main"

 HorizontalAlignment ="Center" VerticalAlignment ="Center" />

 <! -- demonstrate triangles around the AdornedElement -- >

 <! -- in WPF can use plain go:NodeShape ;

 in Silverlight must surround it with a go:NodePanel -- >

 <go: NodeShape Grid.Row ="0" Grid.Column ="1" Margin ="10"

 HorizontalAlignment ="Center" VerticalAlignment ="Center"

 Fill ="LightGreen" go: NodePanel.Figure ="TriangleUp"

 Width ="20" Height ="20" />

 <go: NodeShape Grid.Row ="1" Grid.Column ="0" Margin ="10"

 HorizontalAlignment ="Center" VerticalAlignment ="Center"

 Fill ="LightGreen" go: NodePanel.Figure ="TriangleLeft"

 Width ="20" Heigh t ="20" />

 <go: NodeShape Grid.Row ="1" Grid.Column ="2" Margin ="10"

 HorizontalAlignment ="Center" VerticalAlignment ="Center"

 Fill ="LightGreen" go: NodePanel.Figure ="TriangleRight"

 Width ="20" Height ="20" />

 <go: NodeShape Grid.Row ="2" Grid.Column ="1" Margin ="10"

 HorizontalAlignment ="Center" VerticalAlignment ="Center"

 Fill ="LightGreen" go: NodePanel.Figure ="TriangleDown"

 Width ="20" Height ="20" />

 </ Grid >

</ DataTemplate >

IŜǊŜΩǎ ǿƘŀǘ ȅƻǳ ƳƛƎƘǘ ǎŜŜ ǿƛǘƘ ŀ node, both unselected and selected using this adornment template:

If you want to display some elements within the bounds, more or less, of the adorned element, you can use
a SpotPanel in your adornment template:

<DataTemplate x: Key="InnerSelectionAdornmentTemplate">

 <! -- automatically sized to the AdornedElement -- >

 <go: SpotPanel Grid.Row ="1" Grid.Column ="1"

 HorizontalAlignment ="Center" VerticalAlignment ="Center">

 <! -- demonstrate triangles just inside the Ad ornedElement -- >

 <! -- in WPF can use plain go:NodeShape ;

 in Silverlight must surround it with a go:NodePanel -- >

 <go: NodeShape go: SpotPanel.Spot ="MiddleTop"

 go: SpotPanel.Alignment ="MiddleTop"

 Fill ="LightGreen" go: NodePanel.Figure ="TriangleUp"

 Width ="10" Height ="10" />

 <go: NodeShape go: SpotPanel.Spot ="MiddleLeft"

 go: SpotPanel.Alignment ="MiddleLeft"

 Fill ="LightGreen" go: NodePanel.Figure ="Trian gleLeft"

 Width ="10" Height ="10" />

 <go: NodeShape go: SpotPanel.Spot ="MiddleRight"

 go: SpotPanel.Alignment ="MiddleRight"

 Fill ="LightGreen" go: NodePanel.Figure ="TriangleRight"

 Width ="10" Height ="10" />

 <go: NodeShape go: SpotPanel.Spot ="MiddleBottom"

 go: SpotPanel.Alignment ="MiddleBottom"

 Fill ="LightGreen" go: NodePanel.Figure ="TriangleDown"

 Width ="10" Height ="10" />

 </ go: SpotPa nel >

</ DataTemplate >

IŜǊŜΩǎ ǿƘŀǘ ȅƻǳ ƳƛƎƘǘ ǎŜŜ ǿƛǘƘ ŀ ƴƻŘŜΣ ōƻǘƘ ǳƴǎŜƭŜŎǘŜŘ ŀƴŘ ǎŜƭŜŎǘŜŘ ǳǎƛƴƎ ǘƘƛǎ ŀŘƻǊƴƳŜƴǘ ǘŜƳǇƭŀǘŜΥ

Selection Appearance Changes

However one can also modify the appearance of a selected part. Basically you can bind properties of your

node to values that depend on the Part.IsSelected property. For example, you could define a converter that

returned a red brush if the input value is true or that returned a normal brush if the value is false.

 <go: BooleanBrushConverter x: Key=" theSelectedBrushConverter "

 TrueColor ="Red">

 <go: BooleanBrushConverter.FalseBrush >

 <LinearGradientBrush StartPoint ="0.5,0" EndPoint ="0.5,1">

 <GradientStop Color ="White" Offset ="0.0" />

 <GradientStop Color ="LightBlue" Offset ="1.0" />

 </ LinearGradientBrush >

 </ go: BooleanBrushConverter.FalseBrush >

 </ go: BooleanBrushConverter >

In this case, the normal brush is a linear gradient. Now we can bind the Background of a panel to the brush

ǊŜǘǳǊƴŜŘ ōȅ ǘƘƛǎ ŎƻƴǾŜǊǘŜǊ ōŀǎŜŘ ƻƴ ǘƘŜ ǾŀƭǳŜ ƻŦ ǘƘŜ ǇŀǊǘΩǎ IsSelected property:

<DataTemplate x: Key="NodeTemplate2">

 <! -- note that the binding path is Path =Node. xxx not Path =Data. xxx -- >

 <Grid Background ="{ Binding Path =Node.IsSelected,

 Converter ={ StaticResource theSelected BrushConverter }}">

 . . .

 </ Grid >

</ DataTemplate >

Note how the binding goes to the Part.IsSelected property, not to Data.IsSelected, because there is no

IsSelected property on the data class.

As a concrete example:

<DataTemplate x: Key="NodeTemplate3">

 <Border BorderBrush ="Gray" BorderThickness ="2" CornerRadius ="5"

 Background ="{ Binding Path =Part.IsSelected,

 Converter ={ StaticResource theSelectedBrushConverter }}"

 go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}">

 <Border.Effect >

 <DropShadowEffect />

 </ Border.Effect >

 <StackPanel Orientation ="Vertical">

 <go: NodePanel HorizontalAlignment ="Center">

 <Path go: NodePanel .Figure ="Arrow" Width ="25" Height ="25"

 Fill ="{ Binding Path =Data.Color,

 Converter ={ StaticResource theStringBrushConverter }}" />

 </ go: NodePanel >

 <TextBlock x: Name="Text" Text ="{ Binding Path =Data.Key}"

 HorizontalAlignment ="Center" />

 </ StackPanel >

 </ Border >

</ DataTemplate >

{ƻ ǿƘŜƴ ȅƻǳ ǎŜƭŜŎǘ ά5Ŝƭǘŀέ ŀƴŘ ά.ŜǘŀέΣ ǘƘŜȅ ŀǇǇŜŀǊ ŀǎ ŦƻƭƭƻǿǎΥ

If you want to execute your own code when the selection changes, you can handle the

Diagram.SelectionChanged event.

Content Alignment and Stretch
The DiagramPanel is the panel that holds all of the Layers that together hold all of the Nodes and Links. The

DiagramPanel is what supports scrolling around and zooming into the diagram. You can scroll

programmatically by setting DiagramPanel.Position and you can zoom in or out programmatically by setting

DiagramPanel.Scale. The user can scroll using the scrollbars or the PanningTool, and the user can zoom in

or out using Control-Mouse-Wheel.

The DiagramPanel.DiagramBounds property indicates the total extent of all of the nodes and links. This

value is automatically updated as nodes are added or removed. If you do not want the DiagramBounds to

always reflect the sizes and locations of all of the nodes and links, you can set the FixedBounds property.

However, if there are any nodes that are located beyond the FixedBounds, it is possible that one cannot

scroll the diagram to see them.

The DiagramPanel has four properties that you will find useful in controlling what is seen and where.

The HorizontalContentAlignment and VerticalContentAlignment properties determine how the diagram is

aligned in the viewport shown by the DiagramPanel, when the DiagramBounds at the current Scale can fit

in the viewport. If you want to keep everything centered in the diagram, set both of these properties to

ά/ŜƴǘŜǊέΦ ²ƛǘƘ ǘƘŜ ǎǘŀƴŘŀǊŘ ControlTemplate you can set these properties on the Diagram:

 <go: Diagram x: Name="myDiagram"

 HorizontalContentAlignment ="Center" VerticalContentAlignment ="Center" />

Caution: the default values for these two Control alignment properties differ between WPF and Silverlight.

IŜǊŜΩǎ ǎƻƳŜ ǊŀƴŘƻƳ ŎƻƴǘŜƴǘ ǘƘŀǘ Ŧƛǘǎ ƛƴ ǘƘŜ DiagramPanel at the current scale:

Resize the Diagram to be much smaller, and it automatically keeps the center of the diagram centered in the

DiagramPanel and shows the scrollbars.

Or, leave the Diagram size the same, but zoom in with either Control-plus (WPF) or Keypad-plus (Silverlight),

and it also keeps the center point and shows the scrollbars.

The user can also zoom in at a particular mouse point by using Control-wheel.

LŦ ȅƻǳ ŘƻƴΩǘ ǿŀƴǘ ǘƘŜ ŘƛŀƎram contents to be aligned continuously, use values of

HorizontalAlignment.Stretch and/or VerticalAlignment.Stretch. In this context the meaning of those

ŜƴǳƳŜǊŀǘƛƻƴ ǾŀƭǳŜǎ ƛǎ ǎƻƳŜǿƘŀǘ ŘƛŦŦŜǊŜƴǘ ǘƘŀƴ ƴƻǊƳŀƭΣ ōŜŎŀǳǎŜ ǘƘŜ ŘƛŀƎǊŀƳ ƴŜǾŜǊ άǎǘǊŜǘŎƘŜǎέ ǘƘŜ ŎƻƴǘŜnt.

It is common for Diagrams to use values of Χ!ƭƛƎƴƳŜƴǘΦ{ǘǊŜǘŎƘ where the user is manually constructing the

graph by drag-and-drop.

If you want the scale to change automatically as the Diagram is resized, use the DiagramPanel.Stretch

property. (This is not an alignment property, but a property to control the scale of the diagram contents.)

 <go: Diagram x: Name="myDiagram" Stretch ="Uniform"

 HorizontalContentAlignment ="Center" VerticalContentAlignment ="Center" />

This will automatically rescale the ŘƛŀƎǊŀƳ ǎƻ ǘƘŀǘ ǘƘŜ ǿƘƻƭŜ ŘƛŀƎǊŀƳΩǎ ōƻǳƴŘǎ fits. You can also use the

value of StretchPolicy.UniformToFill, which rescales the diagram so that the narrower or the shorter

distance fills up the whole area, using a scrollbar to scroll the other dimension (taller or wider). The default

value is StretchPolicy.Unstretched, which does not change the DiagramPanel.Scale.

When there is extra space left over, the contents are centered, according to the two Χ!ƭƛƎƴƳŜƴǘ properties.

Finally, the DiagramPanel.Padding property adds a little space to the DiagramPanel.DiagramBounds, to

avoid having the edge of the DiagramPanel come too close to the contents. Because the default value of

Control.Padding is a Thickness of zero on all four sides, we recommend a larger value so that the edges of

Nodes will not appear to bump against the edges of the Diagram.

As the default ControlTemplate above shows, the four DiagramPanel properties

(HorizontalContentAlignment, VerticalContentAlignment, Stretch, and Padding) normally get their values

from the Diagram, via TemplateBindings.

If you want to set some properties on a DiagramPanel or call its methods, be sure to do so only after the

Diagram.Template has been applied (i.e. expanded and copied). Until the ControlTemplate has been

applied, the value of Diagram.Panel will be null.

For example if you want to establish an event handler on a DiagramΩǎ Panel, you can do so in a

Diagram.TemplateApplied event handler:

 // wait until the Diagram's Panel exists before establishing its event handler

 myDiagram.TemplateApplied += (s, e) => {

 myDiagram.Panel.ViewportBoundsChanged += Panel_ViewportBoundsChanged;

 };

Initial Positioning and Scaling
The aforementioned DiagramPanel properties control the scale (Stretch) and position

(HorizontalContentAlignment and VerticalContentAlignment) all the time. However, it is common to want

to set the scale and/or position of the diagram after the first layout has positioned all of the nodes, but not

thereafter. Towards that end you can set the Diagram.InitialScale and/or Diagram.InitialPosition

properties.

 <go: Diagram InitialPosition ="0 0" . . . >

But there are additional Diagram properties that are convenient for setting the initial scale and/or position

of the DiagramPanel. You can set the Diagram.InitialStretch property to perform a one-time rescaling. For

example:

 <go: Diagram x: Name="myDiagram" InitialStretch ="Uniform"

 HorizontalContentAlignment ="Stretch" VerticalContentAlignment ="Stretch" />

This will perform an initial layout of the contents of the diagram, compute the new

DiagramPanel.DiagramBounds, and rescale it and position it so that everything fits. Afterwards, the user is

free to zoom in or out and to scroll around, as needed.

Two related Diagram properties help position the diagram in the panel based on the ŘƛŀƎǊŀƳΩǎ ōƻǳƴŘǎΥ

InitialDiagramBoundsSpot and InitialPanelSpot. The former property specifies which spot of the diagram

contents should be positioned, and the latter property specifies where in the DiagramPanel it should be

positioned. For example:

 <go: Diagram x: Name="myDiagram"

 InitialDiagramBoundsSpot ="MiddleTop" InitialPanelSpot ="MiddleTop"

 HorizontalContentAlignment ="Stretch" VerticalContentAlignment ="Stretch" />

This will position the middle-top point of the laid-out diagram at the middle-top point of the panel. You will

need to be careful not to choose combinations of values that result in nothing being visible.

DiagramPanel implements the IScrollInfo interface, so you can use those methods and properties to scroll

programmatically. The DiagramPanel.MakeVisible method is useful to scroll the view if the given Part is not

somewhere in the viewport. The DiagramPanel.CenterPart method is useful to try to center a given Part in

the viewport, although the panel might not be able to scroll that far, especially if the content alignment

ǇǊƻǇŜǊǘƛŜǎ ŀǊŜ ƴƻǘ ά{ǘǊŜǘŎƘέΦ

Tools
For flexibility and simplicity, all mouse input is redirected by the Diagram ǘƻ Ǝƻ ǘƘŜ ŘƛŀƎǊŀƳΩǎ CurrentTool.

By default the CurrentTool is an instance of ToolManager, which is responsible for finding another tool that

is ready to run and then making it the new CurrentTool. This causes the new tool to process mouse events

ŀƴŘ ƪŜȅōƻŀǊŘ ŜǾŜƴǘǎ ǳƴǘƛƭ ǘƘŜ ǘƻƻƭ ŘŜŎƛŘŜǎ ƛǘ ƛǎ ŦƛƴƛǎƘŜŘΣ ŀǘ ǿƘƛŎƘ ǘƛƳŜ ǘƘŜ ŘƛŀƎǊŀƳΩǎ ŎǳǊǊŜƴǘ ǘƻƻƭ ǊŜǾŜǊǘǎ ǘƻ

the default ToolManager tool.

There are a number of predefined tools that each Diagram has ς they are accessible as diagram properties

and can be replaced by setting those properties. The name of the tool class is the same as the name of the

diagram property.

Some tools want to run when a mouse-down occurs. These tools include:

¶ RelinkingTool, for reconnecting an existing Link

¶ LinkReshapingTool, for changing the route of a Link

¶ ResizingTool, for resizing a Node or an element within a Node

¶ RotatingTool, for rotating a Node or an element within a Node

Some tools want to run when a mouse-move occurs, after a mouse-down. These tools include:

¶ LinkingTool, for drawing a new Link

¶ DraggingTool, for moving or copying selected Parts

¶ DragSelectingTool, for rubber-band selection of some Parts within a rectangular area

¶ PanningTool, for panning/scrolling the diagram

Some tools only want to run upon a mouse-up event, after a mouse-down. These tools include:

¶ TextEditingTool, for in-place editing of TextBlocks in selected Parts

¶ ClickCreatingTool, for inserting a new Node where the user clicked

¶ ClickSelectingTool, for selecting or de-selecting a Part

Finally, there are some tools, such as DragZoomingTool, that are not normally invoked by the mouse, but

can be started explicitly by setting Diagram.CurrentTool.

To change the behavior of a tool, you can set its properties in XAML and replace the corresponding Diagram

property. For example, to cause control-drag copies to copy the whole effective selection instead of only

the selected parts:

 <go: Diagram . . . >

 <go: Diagram.DraggingTool >

 <gotool : DraggingTool CopiesEffectiveCollection ="True" />

 </ go: Diagram.DraggingTool >

 </ go: Diagram >

To remove a tool, set it to null. For example, to remove the background rubber-band selection tool:

 <go: Diagram DragSelectingTool ="{ x: Null }" . . . / >

Removing this tool also allows the PanningTool to be able to run, because by default the DragSelectingTool

takes precedence.

As another example, it turns out that the ClickCreatingTool is normally never eligible to run because it does

not have a value for ClickCreatingTool.PrototypeData. You might find it suitable to enable it by setting that

property:

 <go: Diagram . . . >

 <go: Diagram.ClickCreatingTool >

 <go: ClickCreatingTool >

 <go: ClickCreatingTool.PrototypeData >

 <local : MyData Key="Lambda" Color ="Fuchsia" />

 </ go: ClickCreatingTool.PrototypeData >

 </ go: ClickCreatingTool >

 </ go: Diagram.ClickCreatingTool >

 </ go: Diagram >

Caution: do not define a tool in XAML as the value of a Style Setter, because only one instance of each tool

is ever created, and would thus be shared by all diagrams affected by that style. A DiagramTool must not be

shared by different Diagrams.

Events
All of the predefined tools that modify the model do so within a model transaction, and they also raise an

event.

Tool Event

ClickCreatingTool NodeCreatedEvent

DraggingTool SelectionMovedEvent or
SelectionCopiedEvent or
ExternalObjectsDroppedEvent

LinkingTool LinkDrawnEvent

RelinkingTool LinkRelinkedEvent

LinkReshapingTool LinkReshapedEvent

ResizingTool NodeResizedEvent

RotatingTool NodeRotatedEvent

TextEditingTool TextEditedEvent

The other predefined tools do not have model-changing side-effects.

There are a number of events raised by commands, implemented by the CommandHandler.

Command Event

Delete
Cut

SelectionDeletingEvent and
SelectionDeletedEvent

Paste ClipboardPastedEvent

Group SelectionGroupedEvent

Ungroup SelectionUngroupedEvent

The other predefined commands do not have model-changing side-effects.

All of these events are defined on the Diagram class. Events are implemented as RoutedEvents in WPF and

as regular CLR events in SilverlightΣ ǿƛǘƘƻǳǘ ǘƘŜ άEventέ ǎǳŦŦƛȄ ƛƴ ǘƘŜ ƴŀƳŜ.

Mouse Clicks

A simple mouse click on a selectable Part will result in that part becoming selected. This is the behavior of

the ClickSelectingTool.

Remember also that if you want to update some displays based on the currently selected node, you can

data-bind the Diagram.SelectedNode property. This was discussed in the section about selection.

If you want to perform some custom action when the user double-clicks on a part, you can define an event

handler for the part:

<DataTemplate x: Key="NodeTemplate4">

 <Border . . .

 MouseLeftButtonDown ="Node_MouseLeftButtonDown">

 . . .

 </ Border >

</ DataTemplate >

private void Node_MouseLeftButtonDown(object sender, MouseButtonEventArgs e) {

 if (DiagramPanel .IsDoubleClick(e)) {

 Node node = Part .FindAncestor< Node>(sender as UIElement);

 if (node != null && node.Data != null) {

 e.Handled = true ;

 MessageBox .Show("double clicked on " + node.Data.ToString());

 }

 }

}

You can implement context menus for nodes by just defining them in your node template:

<DataTemplate x: Key="NodeTemplate3">

 <Border . . . >

 <ContextMenuService .ContextMenu >

 <ContextMenu >

 <MenuItem Header ="some node command" Click ="MenuItem_Click" />

 </ ContextMenu >

 </ ContextMenuService .ContextMenu >

 </ Border >

</ DataTemplate >

private void MenuItem_Click(object sender, RoutedEventArgs e) {
 var partdata = ((FrameworkElement)sender).DataContext as PartManager . PartBinding ;
 if (partdata == null || partdata.Data == null) {
 MessageBox.Show("Clicked on nothing or on unbound part ");
 } else {
 MessageBox.Show("Clicked on data: " + partdata.Data.ToString());

 }
}

In Silverlight 4 if you want to define for the Diagram a default or background context menu, you will need to

set Diagram.ContextMenuEnabled to true.

Other Events

The Diagram and DiagramPanel classes provide a number of additional events not necessarily related to

tools or commands.

The Diagram.InitialLayoutCompleted event is raised after the LayoutManager has performed the first

layout(s) after the DiagramΩǎ ǘŜƳǇƭŀǘŜ Ƙŀǎ ōŜŜƴ ŀǇǇƭƛŜŘ ŀƴŘ ǘƘŜ DiagramPanel.DiagramBounds has been

updated. It can happen again when the Diagram.Model is replaced.

The Diagram.LayoutCompleted event is raised when the LayoutManager has finished performing all needed

diagram and group layouts and the DiagramPanel.DiagramBounds property has been updated. The

frequency of this event depends on the how often layouts need to be performed: the value of

DiagramLayout.Conditions, when nodes or links being added or removed or resized, and explicit calls to

Diagram.LayoutDiagram(). This event occurs after any InitialLayoutCompleted event.

Note: you should ignore the UIElement.LayoutUpdated event.
It has nothing to do with diagram layout.

The Diagram.ModelReplaced event is raised when the Diagram.Model value is replaced.

The Diagram.SelectionChanged event is raised when the contents of the Diagram.SelectedParts collection

changes. You might not need to implement such an event handler if you can depend on data-bindings of the

Diagram.SelectedNode, SelectedLink, and/or SelectedGroup dependency properties.

The Diagram.TemplateApplied event is raised after the DiagramΩǎ ControlTemplate has been expanded.

This is convenient for initializing the Diagram.Panel, which will not exist until the template is applied.

The Diagram.TemplatesChanged event is raised whenever any of the DataTemplates of the Diagram is

replaced, including the template dictionary properties. However, modifying the contents of a

DataTemplateDictionary will not raise any events.

The DiagramPanel.DiagramBoundsChanged event is raised when the value of

DiagramPanel.DiagramBounds has changed.

The DiagramPanel.ViewportBoundsChanged event is raised when the value of

DiagramPanel.ViewportBounds has changed. That happens when the DiagramPanel.Position or Scale or

Width or Height properties have changed.

The Control.Unloaded event by default causes the PartManager to discard all of the Nodes and Links. The

Control.Loaded event rebuilds all of the Nodes and Links. This may result is some loss of state or other side-

effects when the Diagram is removed from the visual tree and then re-inserted into it. Typically this will

happen when the Diagram is in a tab of a TabControl and the user switches tabs. We suggest that you set

Diagram.UnloadingClearsPartManager to false in order to avoid the clearing of Parts and their rebuilding.

Commands
The Diagram control also supports various commands. The CommandHandler class implements pairs of

methods: a method to execute a command, and a predicate that is true when the command may be

executed. For example, for the Copy command, there is a CommandHandler.Copy() method and a

CommandHandler.CanCopy() method. These are virtual methods so that you can easily customize their

behavior by overriding them and replacing the value of Diagram.CommandHandler.

WPF offers support for routed commands. Silverlight only has limited support for commands, so we have

also provided non-routed commands that are defined the same way in both WPF and in Silverlight.

Non-routed ICommand:
property of CommandHandler class

RoutedCommand:
static property of Commands class (WPF only)

CopyCommand Copy

CutCommand Cut

DeleteCommand Delete

PasteCommand Paste

PrintCommand Print

RedoCommand Redo

SelectAllCommand SelectAll

UndoCommand Undo

DecreaseZoomCommand DecreaseZoom

IncreaseZoomCommand IncreaseZoom

ZoomCommand Zoom

GroupCommand Group

UngroupCommand Ungroup

EditCommand Edit

Using non-routed commands in either WPF or Silverlight:

<Button Command="{ Binding ElementName =myDiagram,

 Path =CommandHandler.CopyCommand}"> Copy</ Button >

Using routed commands in WPF only:

<Button Command="Copy"

 CommandTarget ="{ Binding ElementName =myDiagram}"> Copy</ Button >

User Permissions
Programmatically there is no restriction on the kind of operation that you may perform. However, you may

want to restrict the actions that your users may perform.

The simplest restriction is to set the Diagram property IsEnabled to false. Users will not be able to do much

of anything.

More common is to set Diagram.IsReadOnly to true. This allows users to scroll and zoom and to select

parts, but not to insert or delete or drag or modify parts. Caution: just because the diagram is read-only

ŘƻŜǎƴΩǘ ƳŜŀƴ ŀƭƭ ŎƻƴǘǊƻƭǎ in your templates are read-only ς most controls do not even have that concept.

More precise restrictions can be imposed by setting to false properties of the Diagram or of a particular

Layer. Some restrictions, such as AllowZoom, only make sense when applying to the whole Diagram.

Others may also apply to individual parts, such as Copyable on Part corresponding to Diagram.AllowCopy

and to Layer.AllowCopy.

Most of these boolean properties are true by default. Exceptions include: Diagram.AllowDragOut,

Diagram.AllowDrop, and Part.Reshapable/Resizable/Rotatable, Part.TextEditable, bƻŘŜΦ[ƛƴƪŀōƭŜΧ, and

[ƛƴƪΦwŜƭƛƴƪŀōƭŜΧ, which are all false by default.

Enabled Action Diagram
Property

Layer
property

Part (Node, Group, or Link)
attached properties on
root visual element of data
template

Cut/Copy/Paste commands AllowClipboard

Cut/Copy commands,
control-drag copy

AllowCopy AllowCopy Copyable

Cut/Delete/Ungroup commands AllowDelete AllowDelete Deletable

Drag-and-drop out of diagram AllowDragOut

Drag-and-drop into diagram AllowDrop

TextEditingTool AllowEdit AllowEdit Editable (on a Part) and
TextEditable (on a
TextBlock)

Group command AllowGroup AllowGroup Groupable

Group/Paste commands,
ClickCreatingTool, DraggingTool

AllowInsert

LinkingTool AllowLink AllowLink Node.LinkableFrom,
Node.LinkableTo,
Node.LinkableSelfNode,
Node.LinkableDuplicates,
Node.LinkableMaximum
(all on any port element)

DraggingTool AllowMove,
AllowCopy,
AllowInsert

AllowMove,
AllowCopy

Movable, Copyable,
DragOverSnapEnabled,
DragOverSnapCellSize,
DragOverSnapCellSpot,
Node.MinLocation,
Node.MaxLocation

Printing AllowPrint AllowPrint Printable

RelinkingTool AllowRelink AllowRelink Route.RelinkableFrom,
Route.RelinkableTo

LinkReshapingTool AllowReshape AllowReshape Reshapable

ResizingTool AllowResize AllowResize Resizable

RotatingTool AllowRotate AllowRotate Rotatable

PanningTool, DiagramPanel scrolling AllowScroll

SelectAll command,
ClickSelectingTool, DragSelectingTool

AllowSelect AllowSelect Selectable

Undo/Redo commands AllowUndo

Ungroup command AllowUngroup AllowUngroup Group.Ungroupable

Zoom commands AllowZoom

In addition to the diagram/layer/part properties listed above, there are some relevant properties on some of

the model classes.

The DiagramModel.Modifiable property controls whether the user may create or delete or modify nodes or

links or groups. Caution: this property is false by default! Note also that a value of false will only disable

changes to the model, not necessarily to your data. The model cannot know about, nor can it affect, all data

binding or programmatic changes that you do directly to the data. For example, a false value for

DiagramModel.Modifiable will not prevent users from moving nodes around, because the model does not

have any knowledge about node positions.

The GraphLinksModel.ValidCycle and GraphModel.ValidCycle properties control what kinds of graphs the

model supports. This in turn may limit which links may be drawn or reconnected by the user. By default

there are no restrictions on creating cycles in graphs.

The DiagramModel.HasUndoManager property is false by default. You may set this to true in order to

enable undo and redo of model changes and data property changes. You probably will want to set this after

initializing the model, so that users cannot undo your model setup.

Please note that because the UndoManager only records model and data property changes, if you want the

user to be able to undo/redo the drag-moving of nodes, you will need to bind the Node.Location attached

property in your node and group templates to your node data property. For example:

 go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}"

Link Validation
In many diagrams there are semantic restrictions on which links could be considered "valid".

A good user interface will try to prevent the user from drawing invalid links. This is much friendlier than

permitting "bad" links and then trying to point out the errors much later.

There are two linking tools: LinkingTool for drawing new links and RelinkingTool for reconnecting existing

links. There are several built-in properties and methods that will help you constrain the links that the user

may create using these tools.

No links can be drawn by the user unless the Diagram has a LinkingTool and there are nodes with valid ports

from which the user can draw new links. So you can easily prevent new links from being drawn by:

¶ not having any elements in your node DataTemplate acting as valid ports, or

¶ not setting DiagramModel.Modifiable to true, or

¶ making the Diagram.IsReadOnly or setting Diagram.AllowLink false, or

¶ removing the LinkingTool by setting Diagram.LinkingTool to null in either XAML or code

The first condition holds true by default. If you want users to draw new links interactively, say from node A

to node B, you have to make sure that node A has at least one FrameworkElement with the

Node.LinkableFrom attached property set to true, and that node B has at least one FrameworkElement

with the Node.LinkableTo attached property set to true. (Remember that these Linkable... attached

properties should be set on either the root FrameworkElement of the DataTemplate or on any

FrameworkElement ǘƘŀǘ ƛǎ ŘŜŎƭŀǊŜŘ ǘƻ ōŜ ŀ άǇƻǊǘέ by setting the Node.PortId attached property, as

discussed in the section about ports on nodes.)

No links can be reconnected by users unless the Diagram has a RelinkingTool and there are links with a

"Relinkable..." property set to true and there are valid nodes to connect to. You can prevent users from

reconnecting existing links by:

¶ not setting the Route.RelinkableFrom and Route.RelinkableTo properties in your link

DataTemplate to true, or

¶ not setting DiagramModel.Modifiable to true, or

¶ making the Diagram.IsReadOnly or setting Diagram.AllowRelink false, or

¶ removing the RelinkingTool by setting Diagram.RelinkingTool to null in either XAML or code

But often one desires constraints on the permitted links in a diagram. There are some predefined properties

that are convenient for declaring certain cases, and there are some methods that you can override for the

general situation.

The Node.LinkableSelfNode attached property can be set to true on FrameworkElements acting as ports in

order to permit both ends of a link to be the same node. (By default reflexive links are not allowed.)

The Node.LinkableDuplicates attached property can be set to true on FrameworkElements acting as ports

in order to allow more than one link connecting the same two ports in the same direction. (By default

multiple links are not allowed.)

The Node.LinkableMaximum attached property can be set on FrameworkElements acting as ports to limit

how many links can be connected to that port in either direction. (By default there is no limit.)

There is also the ValidCycle property on GraphModel and GraphLinksModel that describes what kinds of

graphs are allowed. (By default all kinds of graphs are permitted.)

Finally, for the most general case, where there are application-specific reasons for allowing some links and

disallowing others, you can override the IsValidLink method in both linking tools.

For example, say that you want to change the behavior of the Flow Chart sample to disallow the user from

specifying links that go directly from "Start" nodes to "End" nodes. You can achieve this by adding the

following override of IsValidLink to both of the custom linking tools that the Flow Chart sample defines:

public override bool IsValidLink(Node fromnode, FrameworkElement fromport,

 Node tonode, FrameworkElement toport) {

 if (! base .IsValidLink(fromnode, fromport, tono de, toport)) return false ;

 // don't allow a link directly from Start to End

 MyNodeData fromnodedata = fromnode.Data as MyNodeData ;

 MyNodeData tonodedata = tonode.Data as MyNodeData ;

 if (fromnodedata != null && fromnodedata.Category == "Start" &&

 tonodedata != null && tonodedata.Category == "End") return false ;

 return true ;

}

Of course this is just a simple example. You can implement arbitrarily complex predicates that examine your

application data.

Diagram Background and Grids
Since a Diagram is a regular Control, you can set its Background property as you can with any other control:

 <go: Diagram . . . >

 <Control.Background >

 <RadialGradientBrush >

 <GradientStop Color ="White" Offset ="0.0" />

 <GradientStop Color ="LightBlue" Offset ="1.0" />

 </ RadialGradientBrush >

 </ Control.Background >

 </ go: Diagram >

Grids

Just by setting Diagram.GridVisible to true, you will show a default grid for the whole diagram.

<go: Diagram GridVisible ="True" BorderBrush ="Blue" BorderThickness ="4" ... />

If you also set the various 5ƛŀƎǊŀƳΦDǊƛŘ{ƴŀǇΧ properties, you will affect how the DraggingTool operates.

<go: Diagram GridVisible ="True" BorderBrush ="Blue" BorderThickness ="4"

 GridSnapEnabled ="True" GridSnapCellSize ="50 50" ... />

Grid snapping involves setting the Node.Location to grid points. In this example the

Diagram.NodeTemplate has reŘŜŦƛƴŜŘ ǘƘŜ ά[ƻŎŀǘƛƻƴέ ǘƻ ōŜ ǘhe center of the colored circle, by setting the

Node.LocationElementName and Node.LocationSpot properties:

<DataTemplate x: Key="NodeTemplate">

 <StackPanel go: Part.Text ="{ Binding Path =Data.Key}"

 go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}"

 go: Node.LocationElementName ="Icon" go: Node.LocationSpot ="Center"

 go: Part.SelectionElementName ="Icon"

 go: Part.Resizable ="True" go: Part.ResizeCellSize ="10 10">

 <! -- in Silverlight surround this with a go:NodePanel -- >

 <go: NodeShape x: Name="Icon" go: NodePanel.Figure ="Junction"

 HorizontalAlignment ="Center" Width ="25" Height ="25"

 Stroke ="Black" StrokeThickness ="1"

 Fill ="{ Binding Path =Data.Color,

 Converter ={ StaticResource theStringBrushConverter }}"

 go: Node.PortId =""

 go: Node.LinkableFrom ="True" go: Node.LinkableTo ="True"

 go: Node.FromSpot ="None" go: Node.ToSpot ="None" />

 <TextBlock Text ="{ Binding Path =Data.Key}" HorizontalAlignment ="Center" />

 </ StackPanel >

</ DataTemplate >

Hence the centers of the Ellipses are positioned at the grid points that are multiples of 50x50, even though

the grid itself happens to show grid lines every 10x10.

This NodeTemplate also enables user-resizing of the ellipses of selected nodes, by setting Part.Resizable to

true and Part.SelectionElementName. You can also control the sizes that the ResizingTool will permit, by

setting Part.ResizeCellSize. By default this would be the value of Diagram.GridSnapCellSize if

Diagram.GridSnapEnabled is true.

ResizingTool also respects the values of FrameworkElement.MinWidth, MinHeight, MaxWidth, and

MaxHeight. ¢ƘƻǎŜ aƛƴκaŀȄΧ ŀǘǘǊƛōǳǘŜǎ ǎƘƻǳƭŘ ōŜ ǎŜǘ ƻƴ ǘƘŜ ŜƭŜƳŜƴǘ ōŜƛƴƎ ǊŜǎƛȊŜŘΣ ƴƻǘ ƻƴ ǘƘŜ Ǌƻƻǘ Ǿƛǎǳŀƭ

element for the node.

Custom Grids

Grids are rendered by GridPatterns, which allow for great flexibility in producing customized grids. You just

need to provide a value for Diagram.GridPattern, for example as a property element in XAML:

<go: Diagram GridVisible ="True" BorderBrush ="Blue" BorderThickness ="4" ...>

 <go: Diagram.GridPattern >

 <go: GridPattern CellSize ="10 10">

 <Path Stroke ="LightGray" StrokeThickness ="1"

 go: GridPattern.Figure ="HorizontalLine" />

 <Path Stroke ="LightGray" StrokeThickness ="1"

 go: GridPattern.Figure ="VerticalLine" />

 <Path Stroke ="LightGreen" StrokeThickness ="1"

 go: GridPattern.Figure ="HorizontalLine" go: GridPattern.Interval ="5" />

 <Path Stroke ="LightBlue" StrokeThickness ="1"

 go: GridPattern.Figure ="VerticalLine" go: GridPattern.Interval ="5" />

 <Path Stroke ="Orange" StrokeThickness ="1"

 go: GridPattern.Figure ="HorizontalLine" go: GridPattern.Interval ="10" />

 <Path Stroke ="Purple" StrokeThickness ="1"

 go: GridPattern.Figure ="VerticalLine" go: GridPattern.Interval ="10" />

 <Path Stroke ="Green" StrokeThickness ="2"

 go: GridPattern.Figure ="HorizontalLine" go: GridPattern.Interval ="20" />

 <Path Stroke ="Blue" StrokeThickness ="2"

 go: GridPattern.Figure ="VerticalLine" go: GridPattern.Interval ="20" />

 </ go: GridPattern >

 </ go: Diagram.GridPattern >

</ go: Diagram >

Note how the GridPattern.Figure and GridPattern.Interval attached properties control the appearance of
the grid. The Interval property controls how often that Path is drawn. All distances between lines are
multiples of the GridPattern.CellSize.

Instead of supplying a value for Diagram.GridPattern, you can set its Diagram.GridPatternTemplate, which
may be more convenient when wanting to style the Diagram. If neither is specified when
Diagram.GridVisible is true, it uses a default grid pattern template.

For a completely different appearance, you might have only horizontal bars (no vertical lines or bars):

 <go: Diagram.GridPattern >

 <go: GridPattern CellSize ="50 50">

 <Path Fill ="LightGreen"

 go: GridPattern.Figure ="HorizontalBar" go: GridPattern. Interval ="2" />

 </ go: GridPattern >

 </ go: Diagram.GridPattern >

Or show only dots:

 <go: Diagram.GridPattern >

 <go: GridPattern CellSize ="10 10">

 <Path Stroke ="Gray" go: GridPattern.Figure ="HorizontalDot" />

 </ go: GridPattern >

 </ go: Diagram.GridPattern >

(the dots might not be visible in this screenshot)

You can control the size of each dot by setting the StrokeThickness:

 <go: Diagram.GridPattern >

 <go: GridPattern CellSize ="10 10">

 <Path Stroke ="Gray" go: GridPattern.Figure ="HorizontalDot" />

 <Path Stroke ="Red" go: GridPattern.Figure ="HorizontalDot"

 StrokeThickness ="2" go: GridPattern.Interval ="5" />

 <Path Stroke ="Blue" go: GridPattern.Figure ="VerticalDot"

 StrokeThickness ="2" go: GridPattern.Interval ="5" />

 </ go: GridPattern >

 </ go: Diagram.GridPattern >

(the smallest dots might not be visible in this screenshot)

Note that GridPattern is a Panel; you can use it inside any element. For example, the GroupTemplate might

include a GridPattern that is different from the Diagram.GridPattern.

<DataTemplate x: Key="GroupTemplate">

 <StackPanel go: Node.Location ="{ Binding Path =Data.L ocation, Mode=TwoWay}"

 go: Node.LocationElementName ="grid"

 go: Part.SelectionElementName ="grid" go: Part.Resizable ="True"

 go: Part.DragOverSnapEnabled ="True"

 go: Part.DragOverSnapCellSize ="15 15">

 <TextBlock Text ="{ Binding Path =Data.Key}" FontWeight ="Bold"

 HorizontalAlignment ="Left" />

 <Border BorderBrush ="{ Binding Path =Data.Color,

 Converter ={ StaticResource theStringBrushConverter }}"

 BorderThickness ="5" CornerRadius ="5">

 <go: GridPattern x: Name="grid" CellSize ="7.5 7.5"

 MinWidth ="15" MinHeight ="15"

 Width ="{ Binding Path =Data.Width, Mode=TwoWay}"

 Height ="{ Binding Path =Data.Height, Mode=TwoWay}">

 <Path Stroke ="LightGreen" StrokeThickness ="0.5"

 go: GridPattern.Figure ="HorizontalLine" />

 <Path Stroke ="LightBlue" StrokeThickness ="0.5"

 go: GridPattern.Figure ="VerticalLine" />

 <Path Stroke ="Green" StrokeThickness ="0.5"

 go: GridPattern.Figure ="HorizontalLine" go: GridPattern.Interval ="4"/>

 <Path Stroke ="Blue" StrokeThickness ="0.5"

 go: GridPattern.Figure ="VerticalLine" go: GridPattern.Interval ="4"/>

 <Path Stroke ="Green" StrokeThickness ="1"

 go: GridPattern.Figure ="HorizontalLine" go: GridPattern.Interval ="8"/>

 <Path Stroke ="Blue" StrokeThickness ="1"

 go: GridPattern.Figure ="VerticalLine" go: GridPattern.Interval ="8"/>

 </ go: GridPattern >

 </ Border >

 <TextBlock Text ="{ Binding Path =Data.Key}" HorizontalAlignment ="Right" />

 </ StackPanel >

</ DataTemplate >

Printing
The PrintManager has a number of options for controlling what is printed and how. By default it will print

the whole diagram at the standard scale, using as many pages as needed. Or you can set the

PrintManager.Scale to Double.NaN to have it automatically shrink the scale, if needed, to fit a single page.

 <go: Diagram . . . >

 <go: Diagram.PrintManager >

 <go: PrintManager Scale ="NaN" />

 </ go: Diagram.PrintManager >

 </ go: Diagram >

Each page includes an X/Y page number along with the total number of columns and rows of pages. Each

page also includes cut marks so that you can easily trim off the right and bottom sides and tape together a

large continuous diagram.

You can control what area of the diagram, in model coordinates, is printed by setting

Diagram.PrintManager.BoundsΦ .ǳǘ ƛǘΩǎ ƳƻǊŜ ŎƻƳƳƻƴ ǘƻ ƭŜǘ ǘƘŜ ǳǎŜǊ ǎŜƭŜŎǘ ǿƘŀǘ ǘƘŜȅ ǿŀƴǘ ǘƻ ǇǊƛƴǘΣ ōȅ

setting PrintManager.Parts in the initialization:

 myDiagram.PrintManager.Parts = myDiagram.SelectedParts;

When nothing is selected, it prints the whole diagram. Note that Parts for which Printable is false, parts in

Layers for which AllowPrint is false, and Adornments are not printed.

You can also customize the decorations that are printed on each page. By default the

PrintManager.ForegroundTemplate property is the template that you can see in the Generic.XAML file. But

you can define your own. For example:

<DataTemplate x: Key="PrintBorderTemplate">

 <go: SpotPanel > <! -- takes the size of each printed page -- >

 <! -- header -- >

 <TextBlock Text ="{ Binding Diagram . Model .Name}" FontSize ="20"

 go: SpotPanel.Spot ="MiddleTop" go: SpotPanel.Alignment ="MiddleBottom" />

 <! -- cut marks -- >

 <Line X1=" - 10" Y1="0" X2="0" Y2="0" Stroke ="Purple" StrokeThickness ="1"

 go: SpotPanel.Spot ="TopLeft" go: SpotPanel.Alignment ="BottomRight" />

 <Line X1="0" Y1=" - 10" X2="0" Y2="0" Stroke ="Purple" StrokeThickness ="1"

 go: SpotPanel.Spot ="TopLeft" go: SpotPanel.Alignment ="BottomRight" />

 <Line X1="10" Y1="0" X2="0" Y2="0" Stroke ="Purple" StrokeThickness ="1"

 go: SpotPanel.Spot ="TopRight" go: SpotPanel.Alignment ="BottomLeft" />

 <Line X1="0" Y1=" - 10" X2="0" Y2="0" Stroke ="Purple" StrokeThickness ="1"

 go: SpotPanel.Spot ="TopRight" go: SpotPanel.Alignment ="BottomLeft" />

 <Line X1="10" Y1="0" X2="0" Y2="0" Stroke ="Purple" StrokeThickness ="1"

 go: SpotPanel.Spot ="BottomRight" go: SpotPanel.Alignment ="TopLeft" />

 <Line X1="0" Y1="10" X2="0" Y2="0" Stroke ="Purple" StrokeThickness ="1"

 go: SpotPanel.Spot ="BottomRight" go: SpotPanel.Alignment ="TopLeft" />

 <Line X1=" - 10" Y1="0" X2="0" Y2="0" Stroke ="Purple" StrokeThickness ="1"

 go: SpotPanel.Spot ="BottomLeft" go: SpotPanel.Alignme nt ="TopRight" />

 <Line X1="0" Y1="10" X2="0" Y2="0" Stroke ="Purple" StrokeThickness ="1"

 go: SpotPanel.Spot ="BottomLeft" go: SpotPanel.Alignment ="TopRight" />

 <! -- footer -- >

 <StackPanel go: SpotPanel.Spot ="MiddleBottom"

 go: SpotPanel.Alignment ="MiddleTop">

 <StackPanel Orientation ="Horizontal" HorizontalAlignment ="Center">

 <TextBlock Text ="{ Binding Column }" />

 <TextBlock Text ="," />

 <TextBlock Text ="{ Binding Row}" />

 <TextBlock Text ="; " />

 <TextBlock Text ="{ Binding Index }" />

 <TextBlock Text =" of " />

 <TextBlock Text ="{ Binding Count }" />

 <TextBlock Text =" [" />

 <TextBlock Text ="{ Binding ColumnCount }" />

 <TextBlock Text ="x" />

 <TextBlock Text ="{ Binding RowCount }" />

 <TextBlock Text ="]" />

 </ StackPanel >

 <StackPanel Orientation ="Horizontal" HorizontalAlignment ="Center">

 <TextBlock Text ="{ Binding ViewportBounds }" />

 <TextBlock Text =" in " />

 <TextBlock Text ="{ Binding TotalBounds }" />

 <TextBlock Text =" @" />

 <TextBlock Text ="{ Binding Scale }" />

 </ StackPanel >

 </ StackPanel >

 </ go: SpotPanel >

</ DataTemplate >

Because these print templates are expanded for each page and data-bound to an instance of PageInfo that

describes that page, you can easily include the page number(s). This example template also shows the

DiagramModel.Name as the header, which property you will need to set in your model-building code.

<go: Diagram x: Name="myDiagram" . . . >

 <go: Diagram.PrintManager >

 <go: PrintManager ForegroundTemplate ="{ StaticResource PrintBorderTemplate }"

 Margin ="30 70 30 70" />

 </ go: Diagram.PrintManager >

</ go: Diagram >

If you are displaying a background GridPattern, you may want the grid to cover all of each printed page. The

PrintManager.PageOptions property controls whether the Diagram.Background and Diagram.GridPattern

are printed and how much of each page they cover.

<go: Diagram x: Name="myDiagram" GridVisible ="True" . . . >

 <go: Diagram.PrintManager >

 <go: PrintManager ForegroundTemplate ="{ StaticResource PrintBorderTemplate }"

 PageOptions ="FullGrid" Margin ="30 70 30 70" />

 </ go: Diagram.PrintManager >

</ go: Diagram >

Here is the result of printing a larger diagram with a background grid. This is a screenshot of XPS Viewer at

20% so that all four pages could fit in a reasonable size image for this document. It may be hard to read

here, but note the custom header and footer on each page.

Overview
GoXam also provides a specialized kind of Diagram called the Overview. It displays the whole model shown

by another Diagram ŀƴŘ ǎƘƻǿǎ ǘƘŀǘ ŘƛŀƎǊŀƳΩǎ ǾƛŜǿǇƻǊǘΦ ¢ƘŜ ǳǎŜǊ Ŏŀƴ ŎƭƛŎƪ ƻǊ ŘǊŀƎ ƛƴ ǘƘŜ Overview to scroll

ǘƘŜ ƻǘƘŜǊ ŘƛŀƎǊŀƳΩǎ ǾƛŜǿǇƻǊǘΦ

<Grid >

 <Grid.RowDefinitions >

 <RowDefinition Height ="*" />

 <RowDefinition Height ="Auto" />

 </ Grid.RowDefinitions >

 <go: Diagram x: Name="myDiagram" . . . >

 . . .

 </ go: Diagram >

 <go: Overview x: Name="myOverview" Grid.Row ="1" HorizontalAlignment ="Left"

 Width ="140" Height ="140" Background ="WhiteSmoke" />

</ Grid >

For the overview to work, the Overview.Observed property must be set to refer to the Diagram that you

want it to show and control. Typically you can do this when the Diagram has been initialized:

 InitializeComponent(); // inserted by Visual Studio

 this.Loaded += (s,e) => { myOverview.Observed = myDiagram; };

This might result in a window such as:

The viewport of myDiagram is shown in myOverview by the magenta rectangle, which may be dragged by

the user. You can customize that rectangle by setting Overview.BoxTemplate.

An Overview cannot show any unbound parts of the observed diagram ς it only shows parts that come from

ǘƘŜ ŘƛŀƎǊŀƳΩǎ ƳƻŘŜƭΦ

By default an Overview uses the same DataTemplates as its observed Diagram. Given the reduced scale

that the overview shows its parts, this may result in unnecessary overhead, particularly if your nodes use

complex templates. It may be much more efficient if you set Overview.UsesObservedTemplates to false

and define your own simple templates. For your purposes it may be good enough to just use simple colored

Rectangles for nodes and simple link shapes without arrowheads or labels for links.

Palette
GoXam also provides a specialized kind of Diagram called the Palette. It displays a number of nodes in a

rectangular grid-like arrangement.

 <Grid >

 <Grid.ColumnDefinitions >

 <ColumnDefinition Width ="*" />

 <ColumnDefinition Width ="*" />

 </ Grid.ColumnDefinitions >

 <go: Palette Grid.Row ="0" Grid.Column ="0" x: Name="myPalette"

 BorderBrush ="Black" BorderThickness ="1"

