Introduction to GoXam
Northwoods Software

Www.nwoods.com
©20082015 Northwoods Software Corporation

GoXamprovides controls for implementing diagrams in your WPF and Silverlight applicaGav8PHs the
name for theimplementation ofGoXamfor WPF3.5or later; GoSilverlightis thename for the
implementation ofGoXamfor Silverlight4.0 or later.

For web apps,hte successor tGoXam for Silverlight 50JS UseGoJSor creating diagrams iHTML and
JavaScript, running entirely in the browser. See molgtat//gojs.net.

You carfind more documentation folGoXamin the installation kits The sitewww.goxam.conhas some
online GoXamsamples for both WPF and Silverligfithe sources for these samples are in the kits too. And
you can ask guestions and search for answers in the fevww.nwoods.com/forumor by email to GoXam

at our domain (nwoods.com).

This document assumes a reasonably good working knowledge of WPF or Silverlight. For overviews and
introductions to these technologies, we suggest you first read several of the very good books about
developing WPF or Silverlight applications and the weds Sitarting at:

1 http://msdn.microsoft.com/enus/library/aa970268.aspx
1 http://windowsclient.net/wpf/default.aspx

1 http://www.silverlight.net/

1 http://www.wpftutorial.net/

This document also assumes a good working knowledge of .NET programming, including generics and Ling
for Objects and Ling for XiM

http://www.nwoods.com/
http://gojs.net/
http://www.goxam.com/
http://www.nwoods.com/forum/forum_topics.asp?FID=7
http://msdn.microsoft.com/en-us/library/aa970268.aspx
http://windowsclient.net/wpf/default.aspx
http://www.silverlight.net/
http://www.wpftutorial.net/

Table of Contents

Introduction t0 GOXam........cccoeviiiiiriiieeiiiiiiiieeeeens
RS [] 4 F= T P 3
Diagram Models and Data Binding.............. 4
Choosing a Model.........cccccceeeeeiiiiiiiinnieiinnns 4

TreeModel.....ccccvvvvvviiiiiii 4
GraphModel...........ccccc, 5
GraphLinksModel...............ccocoeciiininnns 5
Model Data........ccceevviiiiiiiiieeiiiiiieeee e 5
Getting the nodel data...............cceevvvvevineeeee. 6
Discovering Relationships in the Data........ 7
Link information in the node data............ 7
Link information aseparate link data....... 3
Group information in the node data......... 9
Group information with separate link daf
Modifying the Model............ccccoviiiiiinnnnnn. 12
Data Templates for Nodes......................... 13
Data Binding..........occvvvveeeiniiiiiieeeeeee 14
Using NodePanel...........ccccccoeeviiiininnene. 17
RESIZING.......eeiiieeeeeee e 19
Collapsing and Expanding Trees........... 20
In-place Text Editingral Validation......... 21
SPOLS. .. 23
Data Templates for Links.........c..oeeeeeeees 24
Data Binding to Link Nodes................... 29
Link ROULES......evveiiiiiiiiiiiiiiieeeeee 30
LinK Labels.......ccooviiiiiiiiiiieiiiiiiiieee e 32
Link Connection Points on Nodes.............. 34
Ports on NOdES.........c.cvvvveeeiiiiiiiieeeee e 38
Data Templates for Groups............c.evveeee. 39
Collapsing and Expanding SubGraphs.41
Groups With POrts........ccccvvvvvvveeeeeeeeeeenn. 43
Groups as Independent Containers......44
LAYOUL....cieeeieiiie e 45

TreeLayOuUL.........ccoovvvieeeiiieeee e 47

............ EarceDirectedLayoul......eeeeeeeeeeeeo 49
LayeredDigraphLayout.............c.ccceee..... 50
CircularLayout.........cevvvvveeiiiiiiiiiinneeeee, 51

SeleCtioN......cocooiiiiecceee 52
Selection Adornments...............cccceeeeees 52
Seletion Appearance Changes............. 54

Content Alignment and Stretch.................. 56

Initial Positioning and Scaling.................... 60

TOOIS. ...t 61

EVENtS. ..o 62
Mouse ClickS........coeeeeeeiii 63
Other EVENIS.....uvviiiiiieiiieiiivieeeeeeeeeeeeae 64

Commands........ccoocceiiiiiie e 65

User Permissions...............eeeeeeeeeeeeeeeeeeeeenn. 65

Link Validation.............cccueeeeeeieiiieeniennnnnn 67

Diagram Background and Grids................ 69
CUStOM GridS.....ceevieeeiiiiieeeee e 71

Printing..............o oo D

OVEIVIEW. ...eiiieeeiiiiiieeee et 79

Palette.. ... 80

Template Dictionaries............ccccvvvvvvveenee. 82

Generating Images..........cccceevvviiviveeeeeennnne 85

Saving and Loading data using XML........ 85
Adding Data Propess...............cccveeeeenn. 87

Updating a database..................cccocnnnnens 88

Deploying your applicatian....................... 90

APPENAIX ..ttt

Diagram Templates......cccccccvvvveiieeieecenne... 92

LAYEIS . it 92

Decorative Elemés and Unbound Nodes.. 94

Unbound LinKS......cccooeiiieiiiiiiiiiiiiicee e, 98

Performance considerations..................... 929

Summary
TheDiagramclass is a WPF or Silverligiantrolthat fully supports the standard customization features
expected in WPF or Silverlighithese features include:

styling

templates

data binding

use ofall WPF/Silverlight elements
use of WPF/Silverlight layout
animation

commands

printing

= =4 =4 =4 =4 4 -4 =4

Diagrams consist of nodes thatay beconnected by links and that may be grouped together into groups.
All of these parts are gathered together in layers and are arranged by laydots. parts are bound tgour
application data.

Each diagram hasModel which interprets your data to determine node-node link relationships and
group-member relationships.

Each diagram hasRartManagerthat is responsible for creatirggNodefor each data item in the
model'sNodeSourcedata collection, and for creating or deletihgnks as needed.

EachNodeor Linkis defined by &ataTemplatethat defines its appearance and behavior.

The nodesnay be positioned manualfynteractively or programmaticallyr may bearranged by the
diagam'sLayoutand byeachGroupQ Bayout

Tools handle mouse event&ach diagram has a number of tools tpatform interactive tasks such as
selecting parts or dragging them or drawing a new link between two no@leeToolManagerdetermines
which toolshould be running, depending on tin@ouse events andurrent circumstances.

Each diagramalsohas aCommandHandlerthat implements various commands (such as Delete)that
handles keyboard events.

TheDiagramPaneprovides theability to scroll the part®f the diagram or to zoom in or oufThe
DiagramPaneslso contains all of theayes, which in turn contain all of thearts (Nodes andLinks).

TheOverviewcontrol allows the user to see the whole model and to control what part thigit the diagram
displays. ThePalette control holds nodes that the user may dragd-drop to a diagram.

Youcan select one or more parts in the diagraiirhe template implementation may change the appearance
of the node or link when it is selectedhe diagrammay alscadd Adornments to indicate selection and to
support tools such aesizing a node or recmecting a link.

Diagram Models and Data Binding

One of the principal features &fAML-definedpresentationis the use of data binding. Practically all controls
in the typical application will depend on data binding to get the information to be displagdxt updated
when the data changes, and to modify the data based on user input.

A Diagramcontrol, however, must support more complex features than the typical confrbe most
complex standard controls inherit frottemsControl whichwill have aColkctionViewto filter, sort, and
group items into a ordered list. But unlike the data used by ls@msContro| a diagram features
relationships between data objects in ways more complex thaimgletotal ordering of items.

There arebinaryrelationshipsorming agraphof nodesandlinks In similar terminology they may be called
nodesandarcs orentitiesandrelationships or verticesandedges

There aregrouping relationshipswvhere agroupcontainsmembers They may be usddr part/ sub-part
containmentor for the nesting okubgraphs

We make use of modelto discover, maintainpavigate, andnodify these relationships based on the data
that the diagram is bound toEachDiagramhas amodel, but models can be shared between diagrams.

To beuseful, every model needs to provide ways to do each of the following kinds of activities:
9 getting the collection of data

discovering the relationships in the data in order to build up the model

updating the model when there are changes to the data

examining the model and navigating the relationships

modifying the collection of data, and changing their relationships

notifying users of the model about changes to the model

supportingtransactions andindo and redo

supporting data transfeand persistene

=8 =4 =4 =4 -4 A =2

Some models ardesigned to beeasier to use oto be more efficient when they have restrictions on the

kinds of relationships they support. There are different ways of organizing the data. And you might or

might not have anymplementationflexibility in the classes used to implement the data, dependimgaur
application requirements and whethé 2 dz Yl @ Y2 RAF& @2dzNJ I LILX AOF A2y Qa

To achieve these goals we provide several model clasgbe Northwoods.GaXamModel namespace.

Choosing a Model

There arecurrentlythree primary model clags that implement the basic notion of being a diagram model

TreeModel

TheTreeModelis the simplest model. It is suitable for applications where the data forms a graph that is a
tree structure: each nodhas at most on@arentbut may have any number ahildren there are no
undirectedcycles or loops in the graph, and there is at most one link connecting any two nodes.

If your graph is not necessarily trséructured, or if you want to suppogroupingas well as links, you will
need to use eithefGraphModelor GraphLinksModel

GraphModel

UseGraphModelwhen each node has a collection of references to the nodes that are connected to that
node and are either coming from or going to the nod&aphModelpermits cycles in the graph, including
reflexive links where both ends of the link are the same node. However, there can be at most one link
connecting each pair of nodes in a single directeomd therecan beno additionalinformation associated
with each link

Grouping inGraphModelsupports the membership of any node in at most one other node, and cycles in the
grouping relationship are not permitted. Hence each subgia@iso a node, and noemubgraph
membership formsts owntree-like structure.

GraphLinksModel

If you need to support an arbitrary amount of data for each link, or if you need multiple distinct links
connecting the same pair of nodes in the same directioonf you need to connect links to linkgyu will
need to use a separate dasiructure to represent each linkTheGraphLinksModetakes a second data
source that$ the collection of link data.

GraphLinksModehlsosupports additional information at both ends of each link, so that one can implement
logicallydifferent connectionpoints for eachmode.

GraphLinksModesupports groupmembership(i.e. subgraphsh exactly the same manner that
GraphModeldoes.

Model Data

The model classes are generic classes. They are type parameterized by the type of the node data,
NodeType and bythe type of the unique keyNodeKey used aseferences to nodes. In the case of
GraphLinksModelthereis also a type parameter for the link data tyjhénkType and a type parameter for
optional data describing each end of the liRlkgrtKey (Howeverthe implementation of diagrarlodes
expects thatPortKeymust be a String.)

The model classes can probably be used with your existing application data classes. If you do not already
have such data classes you can implement them by inheriting from the optional data classes that are in the
Northwoods.GoXanModel namespace, to addpplicationspecific properties.

Generic Models Suggested data classes

TreeModel NodeTypeNodeKey TreeModelNodeDataNodeKey

GraphModel NodeTypeNodeKey GraphModelNodeDataNodeKey

GraphLinksModel ModeTypeNodeKey GraphLinksMdelNodeDataNodeKey and

PortKey LinkType GraphLinksModelLinkDatNodeKey, PortKey
(or UniversalLinkData

The typical usage of models and data is:

/I create a typed model
var model= new GraphLinksModel <MyData, String , String , MyLinkData >();
/l maybe set other model properties too...

/I specify the nodes, which includes the subgraph information
model.NodesSource = new ObservableCollection <MyData>() {
ce /I supply the node data
%

/I specify the links between the nodes
model.LinksSource = new ObservableCollection <MyLinkData >(){
. /I supply the link data
%

/I have the Diagram use the new model

myDiagram.Model = model;

/I after this point all model changes should be in a transaction
The node datand link data classes would be defined like:

public class MyData : GraphLinksModelNodeData <String > {

/I define node data properties ; setters should call RaisePropertyChanged

}

public class MylLinkData : GraphLinksModelLinkData <String , String >{
/I define link data properties ; setters should call RaisePropertyChanged

}

GraphModeland TreeModeldo not have d.inksSourceroperty and you would not need to define or use a
link data class.

Getting the model data

Each model needs access to the collection of data that it is modeling. This means setting the
IDiagramModel.NodesSourgeroperty. The value must be a collectionnofde data.

For exampleconsiderthe following model initialization

var model = new GraphModel <String , String >();

model.NodesSource = new List <String >(){ "Alpha" , "Beta" , "Gamma"', "Delta" 1}

Thisproducesa graphwithout anylinks. The node data are just string8Vithout any customized templates
it might appear as

Alpha Beta

Gamma Delta

In future sections we will discuss customizing the appearance and behavior of nodePatsifigmplates.

If you want b be able to add or remove dafeom the NodesSourceollection and have the model (and
diagram) automatically updated, yahoulddo thefollowing:

model.NodesSource =
new ObservableCollection <String >(0){ "Alpha" , "Beta" , "Gamma", "Delta" };

ObservableCollectiolis in the System.Collections.ObjectModel namespace. It provides notificatluers
the collection is changed, gadding a string to thaDbservableCollectionvill cause an extra node to be
created in the model and shown in the diagram.

Discovering Relationships in the Data

In order to build upthe mod€la {y 26 f SR3AS nddes thie ingdeldust@&Ginide&ckode

data for link information orit needs to be given link datdéescribing the connections betwedine node

data. Usuallythat information is stored as property values on the data, so you just need to provide those
property names to the modelFor generality, not only are simple property names supported, but also
XAMLstyle property paths, typically property names separated by periods. Thus most model properties
GKIF G AaLISOATE LINBLISNI & | OO fathh ANaxadiplésiKadeKgyPaSvhighl Y S a
specifies how to get the key value for a node data object.

However, when the information is not accessible via a propeaty, perhaps because a method call is
required or becauséhe informationneeds to be computed, you can overrigetected virtual methods on
the model to get the needed information. These discodarglementation methods have names that start
o A UFiack @ecause usingaroperty path may use reflection, eerridingthesemethods also produces an
implementationthat isfaster and thatis more likely to work in limitegpermission environments, such as the
typical Silverlight or XBAP application

Link information in the node data

If you have the linkelationshipinformation stored on each node data, you might impkarhthe node data
class to have a property holding the name of the node and another propetiyo holding a collection of
names that the node is connected tdhis is howsraphModelexpecsthe information to be organized.

LT @2dz R2y Qi yolrywin ndde date Yids¥, @i Guyuse one that we provide,
GraphModelNodeData This is a generic class, parameterized bythe of the key value. In the following
examples, the keys are stringdé/e just need to spegifthe property names for discovegi KS Y& ¢ I 2 F
each node and for discoveritiige collection oftonnectednode names.

/I model isa GraphModel usin g GraphModelNodeData<String> as the node data

/I and strings as the node key type

var model= new GraphModel <GraphModelNodeData <String >, String >();

model.NodeKeyPath = "Key" ; /Il use the GraphModelNodeData.Key property
model. ToNodesPath = "ToKeys" ; [/ the node property to get a list of node keys

model.NodesSource = new ObservableCollection <GraphModelNodeData <String >>() {

0|

new GraphModelNodeData <String >() {

Key="Alpha" ,

ToKeys=new ObservableCollection <String >(){ "Beta" , "Gamma" }
|3
new GraphModelNodeData <String >() {

Key="Beta" ,

ToKeys=new ObservableCollection <String >(){ "Beta" }
|3

new GraphModelNodeData <String >() {
Key="Gamma",

ToKeys=new ObservableCollection <String >(O){ ‘"Delta" }
}l
new GraphModelNodeData <String >(){

Key="Delta"

ToKeys=new ObservableCollection <String >(){ "Alpha" }
}

2
myDiagram.Model = model;

The result might appear as:
Alphg=——»Beta

\U

Gamma—»Delta

Link information as separate link data
If you have the link data separate from the node data, as is the casarémhLinksModelyou might do:

/I model isa GraphLinksModel using strings as the node data

/land UniversalLinkData as the link data

var model= new GraphLinksModel <String , String , String , UniversalLinkData >();
/I the key value for each node data is just the whole data itself, a String
model.NodeKeyPath = "

model.NodeKeylsNodeData = true ; //NodeT ype and NodeKey values are the same!
model.LinkFromPath = "From" ; /[UniversalLinkData.From C source 6 s node key
model.LinkToPath = "To" ; /I UniversalLinkData.To C destination 6 s node key

model.NodesSource =

new ObservableCollection <String >(0){ "“Alpha" , "Beta" , "Gamma"', "Delta" };
model.LinksSource = new ObservableCollection <UniversalLinkData >(){
new UniversalLinkData ("Alpha" , "Beta"),
new UniversalLinkData ("Alpha" , "Gamma"),
new UniversalLinkData ("Beta" , "Beta"),
new UniversalLinkData ("Gamma", "Delta"),
new UniversalLinkData ("Delta" , "Alpha")

h

myDiagram.Model = model;

Note that the node data in this example are just strings. Because the node value, a string, is also its own key
value, there is no property to get the key given a nqdence theNodeKeyPaths the empty string. Of

courseint G NBI f £ | LILIX A OF G A 2nbdedla®addass, 2itheér Rheftihg@r@n & 2 dzNJ 2 gy
GraphLinksModelNodeDatar defined from scratch. This would allow you to add all of the properties you
need for each node, bindable from the node data templates.

In thisexample we are using thHgniversalLinkDatalass thatve provide as a convenient prgefined class
that you can use for representing link datBheFromproperty ofUniversalLinkDatas supplied as the first
argument of the constructor; it refers to th@srce node. Thé&opropertyis supplied as the second
argument; it refers to the destination node.

UniversalLinkDatanherits fromGraphLinksModelLinkDataAs with the node datafte typicald NB | f £
application would define its own link data clas&her inheriting fromGraphLinksModelLinkDatar defined

from scratchholding whatever informadabn was needed for each linlDefining your own data classes is also
moretyped S GKIy dzaAy3d GKS a! yAOBSNEIObextt Of I aaSa GKI

Theresulting diagram is exactly tharse as for the previous example:

Alphg=——»Eeta

'\U

Gamma—=®Delta

Group information in the node data

Grouping/membership information is accessible in a similar manner, as properties on the nodé&data.
clarity, we use theubgraphterminology torefer to groups where each node can have at most one
container group. At the current time all GoXam groups are also subgraphs.

You need teset two more model properties used for model discovery:

/I model isa GraphModel ora GraphLinksModel
model.NodelsGroupPath = "IsSubGraph" ; // node pr o
model.GroupNodePath = "SubGraphKey" ; //node pr o

i

0
r

o wm

y is true if
y S

pe it
pe gets containe
Then change th&odesSourcelata as followsinitializing the two additional properties

/I model isa GraphModel using GraphModelNodeData <String > as the node data,
/I and the node keys are strings
var model = new GraphModel <GraphModelNodeData <String >, String >();

model.NodeKeyPath = "Key" ; /I use the GraphModelNodeData.Key property
model. ToNodesPath = "ToKeys" ; [/ this node property get s alist of node keys
model.NodelsGroupPath = "IsSubGraph” ; // node property is true if it
model.GroupNodePath = "SubGraphKey" ; // node property gets containe

model.NodesSource = new ObservableCollection <GraphModel NodeData <String >>() {
new GraphModelNode Data <String >() {

Key="Alpha"

ToKeys=new ObservableCollection <String >(){ "Beta" , "Gamma" }
|3
new GraphModelNode Data <String >() {

Key="Beta" |,

ToKeys=new ObservableCollection <String >(0){ "Beta" }
}l

new GraphModelNode Data <String >() {
Key="Gamma",
ToKeys=new ObservableCollection <String >0 { ‘"Delta" },
SubGraphKey= "Epsilon"”
3
new GraphModelNode Data <String >() {
Key="Delta"
ToKeys=new ObservableCollection <String >(0{ "Alpha" },
SubGraphKey= "Epsilon”
3
new GraphModelNode Data <String >() {
Key="Epsilon"
IsSubGraph=true
2

%
myDiagram.Model = model;

This results in a diagram that might look like:

Alphg——»Eecta

N,
epsflon "\

Delta€—7Gamma

Group information with separate link data

The same result is easily achieved @raphLinksModeby usingGraphLinksModelNodPatainstead of
GraphModelNodeDatas the node dataln this example we will subcla€saphLinksModelNodeDatam
order to add a property for each node.

/I model isa GraphLinksModel using MyData as the node data
/I indexed with strings, an d UniversalLinkData as the link data
var model = new GraphLinksModel <MyData, String , String , UniversalLinkData >();

model.NodeKeyPath = "Key" ; [/ use the Graph Links ModelNodeData.Key property

model.LinkFromPath = "From" ; /[UniversalLinkData.From C sourceds node key
model.LinkToPath = "To" ; /I UniversalLinkData.To C destinationbés node ke
model.NodelsGroupPath = "IsSubGraph" ; // node property is true if it
model.GroupNodePath = "SubGraphKey" ; // node property gets containe
/I specify the nodes, which includes subgraph information

/[and other properties specific to MyData, such as Color

model.NodesSource = new ObservableCollection <MyData>() {

new MyData() { Key= "Alpha" , Color= "Purple " },
new MyData() { Key= "Beta" , Color= "Orange" 1},

new MyData() {Key= "Gamma", Color= "Red" , SubGraphKey= "Epsilon" H

new MyData() { Key= "Delta" , Color= "Green" , SubGraphKey= "Epsilon"
new MyData() { Key= "Epsilon® , Color= "Blue" ,IsSubGraph= true },

h

/I specify the links between the nodes

model.LinksSource = new ObservableCollection <UniversalLinkData >() {
new UniversalLinkData ("Alpha" , "Beta"),
new UniversalLinkData ("Alpha" , "Gamma"),
new UniversalLinkData ("Beta" , "Beta"),

new UniversalLinkData ("Gamma", "Delta"),
new UniversalLinkData ("Delta" , "Alpha")

h

myDiagram.Model = model;

/I Define custom node data; t he node key is of type String
/I Add a property named Color that might change
[Serializable 1 /I serializable only for WPF
public class MyData : GraphLinksModelNodeData <String > {
public String Color {
get { return _Color;}

set {
if (_Color!= value) {
String old = _Color;
_Color= value ;

RaisePropertyChanged("Color" , old, value);

}
}

private String _Color= "Black" ;

}

This modetesults in a diagram that looks the samefasthe GraphModell 6 2 @S @
the new Colorproperty soon.)

Alphg=——»Beta

NS,
Epsflon "\

Deltat—Gamma

}

62 SQf ft

If you did not need to support updating the diagram when the value of Color chamgrésps because you
expect the data to be readnly, you could use a simpler implementation of the property:

/I Define custom node data that does not notify the diagram about Color changes

[Serializable] /I serializable only for WPF
public class MyData : GraphLinksModelNodeData <String > {
public MyData () {
this .Color = "Black" ;

}
public String Color { get; set; }

}

But if you do expect to modify thielyData.Colormproperty and expect the corresponding node to change its
appearance, you must use the more verbose definition shown earlier thatRaikePropertyChangeid the
setter.

Modifying the Model
Once you have created a modtild it how to discover relationships between the nodes (set the various

Xt | grdperties ofthemodel)f yAGA L f AT SR GKS Y2RStQa RIFIGF o0ONBIFGS

Y 2 R NodesgSourck and assigned the model to yoDiagram you night want to programmatically make
changes to the diagram. You do this by making changes to the model and to the data, not by trying to
change theParts that are in theDiagram

| SNBQa (GKS O02RS F2NJ ONBIGAYI | no@RS YR | tAy]

/I Given a Node, perhaps a selected one, or one that contains a button that
/I was clicked, create another Node nearby and connect to it with a new link.
public Node ConnectToNewNode(Node start) {

MyData fromdata = start.Data as MyData;

if (from data== null) return null

/I all changes should always occur within a model transaction

myDiagram.StartTransaction("new connected node");

/I create the new node data

MyData todata= new MyData();

[/l initialize the new node data here...

todata.Text = "new node"

todata.Location = new Point (start.Location.X + 250, start.Location.Y);

/l add the new node data to the model's NodesSource collection

myDiagram.Model.AddNode(todata);

/I add a link to the model connecting the two data ob jects
myDiagram.Model.AddLink(fromdata, null , todata, null);

/I finish the transaction

myDiagram.CommitTransaction("new connected node");

return myDiagram.PartManager.FindNodeForData(todata, myDiagram.Model);

}

Whenever you modify a diagram programmatically, you should wrap the code in a transaction.
StartTransactiorand CommitTransactiorare methods that you should call either on thkodel or on the
Diagram (TheDiagranf2 @ethods just call the same named metls on theDiagramModel) Although the
primary benefit from using transactions is to group together séffects for undo/redo, you should use
model transactions even if you are not supporting undo/redo.

Note that you danot create aNodedirectly. Instad you create a data object corresponding to a node,
AYAGAFEATS AGZ |y RodésBG©O 2 RRSOGAZZPIKSH YRRSY D&
AddNodemethod, but you could instead insert the data directly into tdedesSourceolledion, assuming

the collection implement$NotifyCollectionChanged

Programmatically creating links uses the same idea: modify the model by adding or modifyingatata.

GraphModelor aTreeModeE @ 2dz ONBI GS | ftAy]l o6& aSatddAiy3a | y2RS

I y2RS RIGIFQa 02t f S3aphliakgModefou heBdrScheBte/a0idkdlaba objectiBdNI |
AyaSNI Al Aiyk§Surdedlié&etioN. ZTReIHLMEMethod shown above may work for any kind
of model, although for &raphLinksModethere are some restrictions.

Il 2¢6 R2Sa 2yS 3SG I NBFSNByOS (2 | y2RSK befabl@ 2 dz O
to callPartManager.FindNodeForDatasshown above But if the code is being called from an event

handler on an element in Hode, you will need to walk up the visual tree until you find thede. The

easiest way to do that is with:

Node node = Part .FindAncestor< Node>(sender as UlElement);
if (node!= null){
Node newnode = ConnectToNewNode(node);
if (newdata != null) {
/I Select the new node
myDiagram.SelectedParts.Clear();
newnode.lsSelected = true ;

}
}

Data Templates for Nodes
The appearance of any node is determined not only by the data to which it is bound but also the
DataTemplateused to define the elements of its visual tree.

The simplest usefuatatemplates for nodesare probably:

<DataTemplate >
<TextBlock Text ="{ Binding Path =Data}" />
</ DataTemplate >

or:

<DataTemplate >
<TextBlock Text ="{ Binding Path =Data.Key}" />
</ DataTemplate >

¢CKS FANRG 2yS 2dzald O2y @SNI a (h&seconldriebneits thatalidof G2 |
they 2 R GafaG@Reypropertyto a string and displays ifThe first onds basicallythe one usedn the

screenshots shown before that used strings as the node data; the second one was used for those examples
that usedGraphModelNodeDatar GraphLinksModelNodeDatas the node data.

Because templates may be shared, and because it helps to simplify the XAMioyld normally use a
node template by defining it as a resource and referring to it as the value dadeTemplateproperty of
aDiagram For example:

<UserControl.Resources >
<DataTemplate x: Key="NodeTemplate 1">
<TextBlock Text ="{ Binding Path =Data.Key}" go: Part .SelectionAdorned ="True" />
</ DataTemplate >
<! -- define other templates here - >

</ UserControl.Resources >

<go: Diagram x: Name="myDiagram" NodeTemplate ="{ StaticResource NodeTemplate 1}' />

In this cae the node will appear just agith the simpler templates, but when the user clicks on the node, a
rectangular selection handle will be appear around the node, visually indicatud ik selected.In the
F2fft26Ay3 aONBSyakKz2dadx a! ftLKIFE FyYyR a. SiilFé NBE aSft S
O2yySOGAYy3 a. SillFé¢ gAGK AGaStTo

8
AN

Gamma—®*Delta

Thenode selectioreffect was achieved just by setting this attached property:
go: Part.SelectionAdorned ="True"
BecauséNodeinherits fromPart, you can refer to precisely the same attached property with:

go: Node.SelectionAdorned ="True"

Setting these kinds of attached properties has to be done on the root visual element déthemplate,
not on anynestad element within that template, nor on thodeitself.

In this section we will present more node data templates. These designs concentrate on simple nodes. A
fFGSN) aSOlA2ys at2Nlia 2y b 2deMéttadif@dntelnsnts hanalk S | o6 .
Other sections discuss data templates for groups and for links.

You can also define multiple templates for nodes and dynamically choose which one fbhisallows you

to have many differently appearing nodestie same diagram. The technique is discussed in a later section
about DataTemplateDictionaries

You can findie XAML for the default taplates and styles as:
docs\ GenericWPF.xaml or docs\ GenericSilverlight.xaml

Data Binding

[SGQa YI | ByDd@EClogrdperty. Krithis example each node will have a colored cube as the
principal shape, with some text below it. First there needs to be a resource that is a converter from strings
(the type ofMyData.Colo) to Brush:

<go: StringBrushConverter x: Key="theStringBrushConverter" />

¢tKSy 6S Ol y BokegreundBaluétll thaBrbdhrét@ded by converting thélyData.Color
property value.

<DataTemplate x: Key="NodeTemplate 2">
<TextBlock Text ="{ Binding Path =Data.Key}"

Foreground ="{ Binding Path =Data.Color,
Converter ={ StaticResource theStringBrushConverter B>
</ DataTemplate >

We now get the following screenshot:

Alpha Beta

I
Eps.‘bn

Gamma—»Delta

|l SNBQa | y2RS GSYLXIGS O2yaraidAay3a 2F &aSOSNI ¢
<DataTemplate x: Key="NodeTemplate 3">
<Border BorderThickness ="1" BorderBrush ="Black"
Padding ="2,0,2,0" CornerRadius ="3"
go: Part .SelectionAdorned ="True"
go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}">

<StackPanel >
<TextBlock Tex
<TextBlock Tex
<TextBlock Tex
<TextBlock Tex

</ StackPanel >

</ Border >
</ DataTemplate >

Binding Path =Data.Name}" FontWeight ="Bold" />
Binding Path =Data.Title}" />

Binding Path =Data.ID}" />

Binding Path =Data.Boss}" />

— - - -

late Xate Nt Y aant

This results in nodes that look likeese three(with an offwhite background for th®iagran):

Corrado "Junior’ Soprano

the Boss
1
I
|

Tony Soprano Herman 'Hesh' Rabkin
Underboss Advisor
2 3
1 1

Note how the template is bound to the properties of the node data.sMif the bindings are oneay, from
the data to the elementsBut the bindingoetweenthe Node.LocatiorattachedLINR LISNIi & | y R

iKS

Locationpropertyistwo-way: if the value of either property changes, the other one is updated. This means

thatnot2 yf & gAf f Y2 Rdcaidgnproparty indeesStheRbdé ih eidiagram, but interactively
dragging the node will modify the data.

For a different kind of node, we will usédaawinglmage(WPF only).

<DataTemplate x: Key="NodeTemplate DI">

<StackPanel go: Part.SelectionAdorned ="True"

go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}">
<! -- WPF: This image uses a Drawing object for its source - >
<Image HorizontalAlignment ="Center">
<Image.Source >
<Drawinglmage PresentationOptions . Freeze ="True">

<Drawinglmage.Drawing >
<GeometryDrawing >
<GeometryDrawing.Geometry >
<GeometryGroup >
<EllipseGeometry Center ="50,50" RadiusX ="45" RadiusY ="20" />
<EllipseGeometry Center ="50,50" RadiusX ="20" RadiusY ="45"/>
</ GeometryGroup >
</ GeometryDrawing.Geometry >
<GeometryDrawing.Brush >
<LinearGradientBrush >
<GradientStop Offset ="0.0" Color ="Blue" />
<GradientStop Offset ="1.0" Color ="#CCCCFF" />
</ LinearGradientBrush >
</ GeometryDrawing.Brush >
<GeometryDrawing.Pen >
<Pen Thickness ="10" Brush ="Black" />
</ GeometryDrawing.Pen >
</ GeometryDrawing >
</ Drawinglmage.Drawing >
</ Drawinglmage >
</ Image.Source >
</ Image >
<TextBlock Text ="{ Binding Path =Data.Text}" HorizontalAlignment ="Cent er" />
</ StackPanel >
</ DataTemplate >

The exampl®rawinglmagewas taken from the WPF documentation. This node template just adds a text
label centered below the imagelhe result is:

a7

Using eDrawinglmagein WPF is more resource efficient when the drawing can be shared by multiple nodes.

Silverlight does not permit such sharing, but you can still get the sésunal result by usingRathand the
sameGeometryGroupandLinearGradientBrush

<DataTemplate x: Key="NodeTemplateEG">

<StackPanel go: Part.SelectionAdorned ="True"
go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}">
<!l -- Silverlight: use a Path -- >

<Path Stroke ="Black" StrokeThickness ="10">
<Path.Fill >

<LinearGradientBrush >
<GradientStop Offset ="0.0" Color ="Blue" />
<GradientStop Offset ="1.0" Color ="#CCCCFF" />
</ LinearGradientBrush >
</ Path.Fill >
<Path.Data >
<GeometryGroup >
<EllipseGeometry Center ="50,50" RadiusX ="45" RadiusY ="20"/>
<EllipseGeometry Center ="50,50" RadiusX ="20" RadiusY ="45"/>
</ GeometryGroup >
</ Path.Data >
</ Path >
<TextBlock Text ="{ Binding Path =Data.Text}" HorizontalAlignment ="Center" />
</ StackPanel >
</ DataTemplate >

Using NodePanel

Of course you can mak@urtemplates as complex as you need and as pretty as you v&etause it is

common to have each node display some kind of shape along with some text inside it, we have provided the
NodePanelclass which cahold a NodeShape (If you want the text to be outside of the shape, use a
StackPanebr Gridto arrange the elements.)

Furthermore, we have implemented geometries for many common shapes. These are listed by the
NodeFigureenumeration. By setting thgo:NodePanel.Figurattached property on thé&lodeShapethe
shape will automatically use@eometrycorresponding to that particular figure.

The NodeFigures sample shows all of the predefined shapes, which are enumeratedNogédiggureype.

Consider the following two resource definitions:

<! -- define a conversion from String to Color -- >
<go: StringColorConverter x: Key="theStringColorConverter" />

<DataTemplate x: Key="NodeTemplate 4">
<! -- a NodePanel shows a background shape and
places the other panel children inside the shape - >
<go: NodePanel go: Node.SelectionAdorned ="True"
go: Node.ToSpot ="LeftSide" go: Node.FromSpot ="RightSide" >
<! -- this shape gets the geometry defined by the NodePanel .Figure attached
property -- >
<go: NodeShape go: NodePanel .Figure ="Database"
Stroke ="Black" StrokeThickness ="1">
<Shape.Fill >

<! -- use a fancier brush than a simple solid color - >
<LinearGradientBrush StartPoint ="0.0 0.0" EndPoint ="1.0 0.0">
<LinearGradientBrush.GradientStops >
<GradientStop Color ="{ Binding Path =Data.Color,
Converter ={ StaticResource theStringColorConverter ha

Offset ="0.0"/>
<GradientStop Color ="White" Offset ="0.5"/>
<GradientStop Color ="{ Binding Path =Data.Color,
Converter ={Stati cResource theStringColorConverter ha
Offset ="1.0"/>
</ LinearGradientBrush.GradientStops >

</ LinearGradientBrush >
</ Shape.Fill >
</ go: NodeShape >

<! -- this TextBlock elementis arranged inside the NodePanel 6 s shape -- >
<TextBlock Text ="{ Binding Path =Data.Key}" TextAlignment ="Center"
HorizontalAlignment ="Center" VerticalAlignment ="Center" />

</ go: NodePanel >
</ DataTemplate >

Note how theLinearGradientBruslis constructed, binding two of the gradient stop colors to the
MyData.Colomroperty. [Note: this binding does not work in SilverlighThe binding also depends on the
presence of &tringColorConverte(not aStringBrushConvertgr which was also defed as a resource.
The result might look like:

The above use diodePanebhssumes that the shape, the first child of the panel, has a fixed width and
height. (If thewidth or Heightare notd dzLJLJt A SRYX G KS@& RSFl dZ G G2émnnz
shapes above.) The other children of thedePanehre arranged inside the first child, observing the
HorizontalAlignmentand/or VerticalAlignmentproperties of the child if the width and/or height are smaller
than the available area inside the first child. For example:

<DataTemplate x: Key="NodeTemplate2">
<go: NodePanel Sizing ="Fixed">

<go: NodeShape go: NodePanel.Figure ="Parallelogram1"”
Width ="100" Height ="50"
Stroke ="Black" StrokeThickness ="1" Fill ="LightYellow" />
<TextBlock Text ="{ Binding Path =Data.Key}" TextAlignment ="Left"
HorizontalAlignment ="Right" VerticalAlignment ="Bottom" />

</ go: NodePanel >
</ DataTemplate >

This might produce:

[L

NodePanelSizingdefaults toFixed Note the setting ofVidth andHeightof the shape.

Butyou can also have the first child be sized to fit around the other children. This is convenient when you
want to show a variable amount of text and want the minimal amount of shape surrounding it. Just set
Sizingto Auto:

<DataTemplate x: Key="NodeTempla te3">
<go: NodePanel Sizing ="Auto">
<go: NodeShape go: NodePanel.Figure ="Parallelogram1"
Stroke ="Black" StrokeThickness ="1" Fill ="LightYellow" />
<TextBlock Text ="{ Binding Path =Data.Key}" TextAlignment ="Left"
Margin ="10" />
</ go: NodePanel >
</ DataTemplate >

This might produce:

[] [ome]

Note how we dmot set theWidth or Heightof the shape. Furthermore we do not set the
HorizontalAlignmentor VerticalAlignment because those properties have no effeciextAlignment
affects how the text is rendered in its allotted space, not how it is positioned in its phtaljinreserves
some room around th&extBlockg without it the parallelogram would be tightiground the text)

Resizing

If youwantto letusersresizesughz RSa> @2dz FANRG ySSR G2 (GKAY] I 02 d:
GKFG gAftf O2yGNRf GKS aATS FyR fleéz2dzi 2F +tt 2F 0
GKS 2dzi SN¥2aid 2N aNR2(é¢ S@itisindtlalivgs Sifficemt ®yust sepoT G KS §GSY
Part.Resizable ="True" on the root elementyou also need to indicate which element should be the

one to get the resize handles and be resized byRbsizingTool

<DataTemplate x: Key="NodeTemplate4">
<go: NodePanel Sizing ="Fixed"

go: Part.Resizable ="True" go: Part. Resize ElementName ="Shape">
<go: NodeShape x: Name="Shape" go: NodePanel.Figure ="Parallelograml1"
Width ="100" Height ="50"
Stroke ="Black" StrokeThickness ="1" Fill ="LightYellow" />
<TextBlock Text ="{ Binding Path =Data.Key}" Margin ="10"
HorizontalAlignment ="Center" VerticalAlignment ="Center" />

</ go: NodePanel >
</ DataTemplate >

Note how the root element refers to th&lodeShapédy name so that useresizing will actually change the
width and height of that shapelf you do not specify thBart Resiz&lementName the root element will
get the resize handles and attemptsresize theNodePanehre not likely to have the effect you want.

Sizing' Eixed is appropriate because that causes fledePanelo fit the other childelements within the
shape. Sizing ¢ | drauwde&NodePaneto fit the shape around all of the other children, which is not what

the user would want if they were trying to resiite In this case, if you want the user to interactively resize
the node, you will need to have tHeart.SelectionElementNameefer to a different child of thélodePanel
not the first child.

Collapsing and Expanding Trees

A common technique for simplifyg treestructured graphs is to collapse subtrees. One way to implement
this functionality is to add Button to each node.

<! -- show eithera"+"ora" - " as the Button content - >
<go: BooleanStringConverter x: Key="theButtonConverter"
TrueString ="-" FalseString ="+"/>
<DataTemplate x: Key="NodeTemplate">
<StackPanel Orientation ="Horizontal" go: Part.SelectionAdorned ="True"
go: Node.IsTreeExpanded ="False">
<l -- go: Node.IsTreeExpanded ="False" tells the node to start collapsed - >
<go: NodePanel Sizing ="Auto">
<go: NodeShape go: NodePanel.Figure ="Ellipse"
Fill ="{ Binding Path =Data.Color,

Converter ={ StaticResource theBrushConverter }}" />
<TextBlock Text ="{ Binding Path =Data.Color}" />
</ go: NodePanel >
<Button x: Name="myCollapseExpandButton" Click ="CollapseExpandButton_Click"
Content ="{ Binding Path =Node.IsExpandedTree,

Converter ={ StaticResource theButtonConverter ha
Width ="20" />
</ StackPanel >
</ DataTemplate >

Note that theButton.Contentis bound to theNode.IsExpandedTregroperty, via a converter that converts

GKS 022tSty @ItdzS (2 SAAKRSNhEKO2 ZNHNBy&2 dzbOF ¥ ND ki

Buttoni KS gl & @&2dz ¢l yd AyaldSFIER 2F dzaAy3d (K2 audent g2
TheButton.Clickevent handler might be implemented as:

private void CollapseExpandButton_Click(object sender, RoutedEventArgs e){
/[the Button is in the visual tree of a Node
Button button=(Button)sender;
Node n= Part .FindAncestor< Node>(button);
if (n!'= null){
SimpleData parentdata = (SimpleData)n.Data;
/I always make changes within a transaction
myDiagram.StartTransaction("CollapseExpand");
// toggle whether this node is expanded or collapsed
n.IsExpandedTree = In.IsExpandedTree;
myDiagram.CommitTransaction("CollapseExpand");
}
}

A graph might start with a single node:

White E|

An expansion (and a controlousewheel zoormout) might produce:

=ROAECS | - |
SBEDIRE | - | /
‘White -._

/ E -
e - | \

£DEDO7S | + |

> EDEADTE | + |

Further expansions (and zoom outs) might progtuc

EE -
EHEH 3
-
b1 i
SEOTHRE -, Y || b
o |
|
; | |
. 1
r L T ..
el - -
Slhbiss
wELTE
A
LT -
o~
L¥
SR -
., T
/ —
- f %,
A -)
|II \\
| .
i 5
L3 Rl
EE

In-place Text Editing and Validation

2 KSy @2dz ¢lyd G2 fSG dzaSNER Y2RATeR
DataTemplateto have its owrTextBoxthat is normallyCollapsedout that you makeVisiblewhen you want

to edit. In fact, you can have arbitrarily complex controls in each of your nodes. However, the disadvantage
is that all of those controls will always be created for each node, thereby increasing the overhead.

GoXansupports inplace textediting. Just set théPat.TextEditable attached property ora TextBlock

<DataTemplate x: Key="NodeTemplate5 ">

Vi

<go: NodePanel Sizing ="Auto">
<go: NodeShape go: NodePanel.Figure ="Parallelogram1"
Stroke ="Black" StrokeThickness ="1" Fill ="LightYellow" />
<TextBlock Text ="{ Binding Path =Data.Text, Mode=TwoWay}"
TextWrapping ="Wrap" TextAlignment ="Left" Margin ="5"
go: Part. TextEdit able ="True" />
</ go: NodePanel >
</ DataTemplate >

(Note that since we expect the user to modify the text, we data bind the text to a different property on the
data, not the unique Key.lf the user starts with:

Then if they select the node and then click on the text, TeatEditingToobrings up arexBox. The user
can edit the text. Losing focus by clicking elsewhere or by tabbing will accept the changes; typing ESCAPE
will cancel the edit and restore the original string.

Here you can see the (blinking) cursor positioned at the end of the setend |

You can implement custom text validation by customizingftartEditingToal This example checks
GKSGKSNI 0KS dzaSNJ KIFa (eLSR GKS tfSGGSNI wSQy

public class CustomTextEditingTool : TextEditingTool {
protected override bool IsValidText(string oldstring, string newstring) {
bool valid = Inewstring.Contains("e"),
if (lvalid) {
MessageBox .Show("Oops: new string contains 'e™);
}
return valid;
}
}
and install with either:
myDiagram.TextEditingTool = new CustomTextEditingTool 0;
or:
<go: Diagram ... >
<go: Diagram.TextEditingTool >
<local : CustomTextEditingTool />
</ go: Diagram.TextEditingTool >

</ go: Diagram >

From that predicate you can use t@elornedPart.Datgoroperty to access the bound data.

Spots

Although previous examples have used standard named values s&goaBottomRightand
Spot.MiddleLeft spots are more general than that. A spot represents a relative point from (0,0) to (1,1)
within a rectangldrom the top-left corner to the bottomright corner, plus an absolute offset.

| SNBQ& || RSY2yaidN} A2y &K2géAy3d yAyS GSE
the SpotPanepanel. You may find thBpotPanelseful when you wantd position smaller elements
GAYAARSE FYy2GKSNJ St SYSyido

<go: SpotPanel >

2025800 a

<Rectangle go: SpotPanel.Main ="True" Fill ="LightCoral"
Width ="200" Height ="100"/>

<TextBlock go: SpotPanel.Spot ="0.0 0.0" Text ="0 0" />
<TextBlock go: SpotPanel.Spot ="0.5 0.0" Text ="0.50"/>
<TextBlock go: SpotPanel.Spot ="1.00.0 Text ="10"/>
<TextBlock go: SpotPanel.Spot ="0.00.5 Text ="00.5" />
<TextBlock go: SpotPanel.Spot ="0.50.5' Text ="0.50.5" />
<TextBlock go: SpotPanel.Spot ="1.00.5 Text ="10.5" />
<TextBlock go: SpotPanel.Spot ="0.01.0 Text ="0 1" />
<TextBlock go: SpotPanel.Spot ="0.51.0 Text ="0.51" />
<TextBlock go: SpotPanel.Spot ="1.01.0 Text ="11"/>

</ go: SpotPanel >

08

0 0.5

07

0.5 0

0.5 0.5 1

.51

1y O

0.5

i

TheSpotPanel.Spoattached property specifies where the element should be positioned3patPanel

TheSpotPanel.Alignmenattached property specifies what point of the element should be positioned at the

SpotPanel.Spopoint. By default the center of each element igaed at the spot point.

TheMain attached property says that the spots are all relative to the bounds of the first child element of the

SpotPanel which in this case isRectangle

Instead of always centering the element at the spot point, you can ngether spot in that element. The
following three child elements are all positioned at the same (0, 0) spot, but with different alignments.

<go: SpotPanel >

<Rectangle
<TextBlock

<TextBlock

go: SpotPanel.Main ="True" Fill ="LightCoral"

Width ="200" Height ="100"/>

go: SpotPanel.Spot ="0 0"

go: SpotPanel.Alignment ="1.01.0" Text ="11"/>
go: SpotPanel.Spot ="00"

go: SpotPanel.Alignment ="0.50.5" Text ="0.50.5" />

<TextBlock go: SpotPanel.Spot ="00"
go: SpotPan el.Alignment ="0.0 0.0" Text ="0 0" />
</ go: SpotPanel >

d.2

Finally,Spots can have absolute offsets in addition to the fractional relative position. These offsets may be
negative. You can specify the X and Y offsets as the third and fourth numbers. In this example there are
three TextBlocls at the bottomileft corner. All ave the default center alignment. One has an X offset of
negative 30 (i.e. further towards the left), one is centered exactly at the botedtrcorner of the rectangle,

and one is shifted towards the right by 30. Similarly there are thiedBlocls atthe bottom-right corner,

with one shifted up 10, and with one shifted down 10.

<go: SpotPanel >
<Rectangle go: SpotPanel.Main ="True" Fill ="LightCoral"
Width ="200" Height ="100" />
<TextBlock go: SpotPanel.Spot ="01 -300" Text ="-300"/>

<TextBlock go: SpotPanel.Spot ="0100" Text ="0 0" />
<TextBlock go: SpotPanel.Spot ="01300" Text ="30 0" />
<TextBlock go: SpotPanel.Spot ="110 -10" Text ="0 -10"/>
<TextBlock go: SpotPanel.Spot ="1100" Text ="00" />
<TextBlock go: SpotPanel.Spot ="110 10" Text ="0 10" />

</ go: SpotPanel >

-300 0

Data Templates for Links
The simplest kind of link consists of only a line, perhaps consisting of multiple segments and curves. You
mustuse theLinkShapeslementfor this:

<DataTemplate >

<go: LinkShape Stroke ="Black" StrokeThickness ="1"/>
</ DataTemplate >

Like node templates, the typical pattern is to define templates as resources, and refer to them when
initializing theDiagram

<UserControl.Resources >

<DataTemplate x: Key="LinkTemplate 1">
<go: LinkShape Stroke ="Black" StrokeThickness ="1"/>
</ DataTemplate >

<! -- define other templates here - >
</ UserControl.Resources >
<go: Diagram x: Name="myDiagram" LinkTemplate ="{ StaticResource LinkTemplate 1}'/>

But note that such a link template will result in links for which there is no arrowieacny other
decoration. Thus such a simple template can only be used where the links are not directional or where the
direction is implicit in the diagram, such asaitree.

It is more common to have at least an arrowhead on each link. For example, the following template is
similar to the default link template the one used when you do not specify tBéagram.LinkTemplate

property.

<DataTemplate x: Key="LinkTemplate 2">

<go: LinkPanel go: Part .SelectionElementName ="Path"
go: Part.SelectionAdorned ="True" >
<go: LinkShape x: Name"Path" go: LinkPanel.IsLinkShape ="True"
Stroke ="Black" StrokeThickness ="1"/>
<Polygon Fill ="Black" Points ="84 08 24 00" <! -- the arrowhead - >
go: LinkPanel.Alignment ="MiddleRight " go: LinkPanel.Index ="-1"
go: LinkPanel.Orientation ="Along" />

</ go: LinkPanel >
</ DataTemplate >

Here is a visual representation of the poinfshe polygon:

DD o

.) P

2.4

Arrowhead for Points="84 08 24 00"

This results in links that appear like those with arrowheads shown before:

Alphg——»Beta

N U
Epsikun \

Gamma—>»Delta

Note the use of thé.inkPaneklass. AinkPanels aPanelthat should have &inkShapeA y Al y I YSR &
¢ KS Ldednfétyia O2 Y Lzl S Roue & i.eliths iveh 4 sétioipaints so that the link shape
FLILISENE (2 O02yyS$0d GKS tAyl1Qa (62 y2RSa®

hyOS GKS fAy1 Qa NrlkdEnScarairandge allioSthedother GhiRl ElenieftsSof the panel to
be somewhere along the path of the link.this template, there is ®olygonthat is acting as an arrowhead.
There are three attached properties that control howiakPanekhild such as thiBolygonis positioned
and rotated relative to the link shape. All three are used in this example.
1 ThelinkPanel.Alignmentttached property is &potthat indicates what point within the polygon
should be positioned along the link path. (More about spots laterthe above case the
MiddleRight spot happens to be the point 8,4.
1 TheLinkPanel.Indexattached property specifies at which segment the child element should be
LX F OSRT T SNR YSIya |0 -imé&andSy RGOS Ny K KY5S ANINRR'E
1 ThelLinkPanel.Orientatiorattached property controls whether and how the child element is
NREGFGSRT a!f2y3¢ YSltya 4G GKS alry$S Fy3atsS a (K

As a practical mattemostlink templates consist of kinkPaneholding aLinkShapeand some varying
number of decorations positioned along the link path.

Setting thePart.SelectionElementNamattached property indicates which element should get a selection
handle when the part becomes selected. In this case the link shape will get the selection handle, which is
what you would normally wantlf you did not set the&SelectionElementNamehe usr would see a big
Rectanglesurrounding the whole link, which is probably not what you want.

,2dz Oty KI @S | a YIyed FNNRoKSI RA-hétadednRdz t A1 S® C2 NJ

<DataTemplate x: Key="LinkTemplate9">

<go: LinkPanel go: Part.SelectionElementName ="Path">
<go: LinkShape x: Name="Path" go: LinkPanel.IsLinkShape ="True"
Stroke ="Black" StrokeThickness ="1"/>

<l-- the Atoodo arr-owhead

<Polygon Fill ="Black" Points ="84 08 24 00"
go: LinkPanel.Alignment ="10.5" go: LinkPanel.Index ="-1"
go: LinkPanel.Orientation ="Along" />

<l-- the Afromd ar-fr@»whead

<Polyline Stroke ="Black" StrokeThickness ="1"
Points =70 035 77"
go: LinkPanel.Alignment ="00.5" go: LinkPanel.Index ="0"
go: LinkPanel.Orientation ="Along" />
</ go: LinkPanel >

</ DataTemplate >

This might look like:

With this mechanism you can implement any arrowhead that you like. The arrowhead element need not be
aPolygono dzi Ol'y o06S I a O2YLX AOFGSR & &2dz gl yilo | 26S 0O
use.

Therefore we have predefined a number of amon arrowheads. You have to provid®athelement as an
immediate child of the_.inkPanel and naturally you can specify Edl and Strokeproperties. Then you can
just set the attached propertiinkPanel. ToArrow For example, the followingAMLs the same as the
F02@S a2 é&leheNRE 6 KSI R

<Path Fill ="Black" go: LinkPanel. ToArrow ="Standard" />

You can also change the size of the arrowhead by settingith#anel. ToArrowScalattached property.
And you can also s€romArrowand FromArrowScale

All of the arrowheads are shown by the Arrowheads sample. Note that this screenshot maydiedats;
look at theArrowheadenumerated type for the complete list.

Click to

Resume!

Of course link templates can be complicated too. If you are usigphLinksModelyou can bind to the
link data.[S (id@ & text element with a white background:

<DataTemplate = x: Key="LinkTemplate3" >

<go: LinkPanel go: Part.SelectionElementName ="Path"
go: Part.SelectionAdorned ="True">
<go: LinkShape x: Name="Path" go: LinkPanel.IsLinkShape ="True"
Stroke ="Black" StrokeThickness ="1"/>

<! -- the arrowhead - >
<Polygon Fill ="Black" Points ="84 08 24 00"

go: LinkPanel.Alignment ="10.5" go: LinkPanel.Index ="-1"

go: LinkPanel.Orientation ="Along" />
<!'-- when using a GraphLinksModel , bind to MyLinkData.Cost as a label - >

<StackPanel Background ="White">
<TextBlock Text ="{ Binding Path =Data.Cost}" Foreground ="Blue" />
</ StackPanel >
</ go: LinkPanel >
</ DataTemplate >

This makes use ofMyLinkDatatype that you might definavith a Costproperty:

[Serializable 1 /I serializable only for WPF
public class MyLinkData : GraphLinksModelLinkData <String , String >{
public double Cost{
get { return _Cost;}
set {
if (_Cost!= value) {
double old = Cost;

_Cost=value ;
RaisePropertyChanged("Cost" , old, value);

}
}
}

private double _Cost;

}

If you expect the link data not to change amekedto update thediagram, you could have a simpler
implementation of the link data class:

[Serializable] /I serializable only for WPF

public class MyLinkData : GraphLinksModelLinkData <String , String >{
public double Cost{ get; set; } [/ ifsetterdoes notneed to notify
}

The result might look like:

Alpha—2—»Beta

AN

E pmt}n

Gamma—d=Delta

Data Binding to Link Nodes
The example above performed data binding dfextBlock2 &extproperty to a property on théinkQ Bata
(an instance oMyLinkDatg. However, it is also possible to data bind link properties to properties on either

A oA X

of theLinkQa O 2 yWNydesOThiS Will work even if the model does not support separate link data.

For instance, if you want each link to be colored accordingto doiNe2 LISNIié 2F GKS a¢2¢ v
the Stroke to Binding Path =Link.ToData.SomeProperty, Converter ={ StaticResource
someConverter }} .

C2NJ SEIFYLIX Sz 68 Oly Odzad2YATS (GKS tAy]l O2f2NAR 2F
depend on thdnfo.Layoutldproperty, wherelnfo is a node data class defined in that sample, and where
the Layoutldproperty indicates which directiothe tree is growingt that node

<local : LinkBrushConverter x: Key="theLinkBrushConverter" />
<DataTemplate x: Key="LinkTemplate">
<go: LinkPanel >
<go:LinkShape StrokeThickness ="1"
Stroke ="{ Binding Path =Link.ToData.Layoutld,

Converter ={ StaticResource theLinkBrushConverter B>
<Polygon Fill ="{ Binding Path =Link.ToData.Layoutld,
Converter ={ StaticResource theLinkBrushConverter ha
Points =84 08 24 00" go: LinkPanel.Index ="-1"
go: LinkPanel.Alignment ="10.5" go: LinkPanel.Orientation ="Along" />

</ go: LinkPanel >
</ DataTemplate >

Note that in this example both thBath.Strokeand thePolygon.Fillare bound to the same data property
using the same converter.

TheLinkBrushConverteneeds to convert thetring value ofnfo.Layoutldto the desiredBrush This is an
example of defining your own custom data converter:

public class LinkBrushConverter : Northwoods.GoXam. Converter {
public override object Convert(object value, Type targetType,
object parameter, System.Globalization. Cultur elnfo culture) {

if (value is String){

switch ((String)value) {
case "Right" : return Black;
case 'Left" : return Red;
case "Up": return Green;
case "Down": return Blue;

default : return Black;
}
}
return Black;
}
private static Brush Black = new SolidColorBrush (Colors .Black);

private static Brush Red = new SolidColorBrush (Colors .Red);
private static Brush Green= new SolidColorBrush (Colors .Green);
private static Brush Blue= new SolidColorBrush (Colors .Blue);

}

For efficiency this example converter only returns one of four predefined solid brushes that are shared.
However, it is common to return@ew SolidColorBrush when the color is more variabldn any case,
this is what the results might look like:

Link Routes
So far all of the example links have been fairly simfdlgou want to customize the path that each link

GF{1Saz e2dz ySSR (2 RoSté EacNiBkhaS dRouwtedhat it @ehtestb defadlt, oyt | Q a
you can replace it wit one that you have initialized.

<DataTemplate x: Key="LinkTemplate4" >
<go: LinkPanel go: Part.SelectionElementName ="Path"
go: Part.SelectionAdorned ="True">
<go: Link.Route >
<go: Route Routing ="Orthogonal" />
</ go: Link.Route >
<go: LinkShape x: Name="Path" go: LinkPanel.IsLinkShape ="True
Stroke ="Black" StrokeThickness ="1"/>

<Polygon Fill ="Black" Points ="84 08 24 00"
go: LinkPanel.Alignment ="10.5" go: LinkPanel.Index =-1"
go: LinkPanel.Orientation ="Along" />
</ go: LinkPanel >
</ DataTemplate >

TheRoute.Routingproperty controls what general route the link will take. The default value is
LinkRouting.Normalwhich produces the direct paths you have seen so far. But if you use
LinkRouting.Orthogonalwhich tries to make each segment of the link either horizontal or veritcalight
look like:

Alpha

Beta

Another routing option assumes oidigonalsegments for the lik, but also tries to avoid crossing over other
nodes.
<go: Link.Route >
<go: Route Routing ="AvoidsNodes" />
</ go: Link.Route >

After adding two nodes to be in the way:

A||:||‘|-EIJ Alpha 2
Beta 2

TheRoute.Curveproperty specifies what kind of path to draw given the points calculated for the route. The
default value id.inkCurve.Nonewhich produces the straight line segments you have seen in the examples
so far. The.inkCurve.Bezievalue produces naturally cved paths.

<go: Link.Route >
<go: Route Curve ="Bezier" />
</ go: Link.Route >

Alpha

Beta

You can control the amount of curvature by setting Beute Curvinesproperty. With varying numbers of
links between the same pair of nodes it will automatically compute valueSdorinesaunless you assign it

explicitly.

Alpha Alpha Alpha
Beta Beta Beta

CombiningorthogonalRoutingand Corner:

<go: Link.Route >
<go: Route Routing ="Orthogonal" Corner ="10"/ >
</ go: Link.Route >

produces:

Alpha

%

EBeta

Or useCurve.JumpOvewith LinkRoutingOrthogonalor AvoidsNodes
<go: Link.Route >
<go: Route Routing ="Orthogonal" Curve ="JumpOver" Corner ="10" />

</ go: Link.Route >

Alpha 2
Alpha

Beta
Beta 2

Link Labels
It is common to add annotations or decorations to links, particularly text. You can easily add any elements

you want to aLinkPanel For example, let us add three text labels to a link, one in the middle, one on the
left side of the link and one on thght side of the link:

<DataTemplate x: Key="LinkTemplate5">
<go: LinkPanel >
<go: LinkShape Stroke ="Black"” StrokeThickness ="1"/>
<Polygon Fill ="Black” Points ="84 08 24 00" go: LinkPanel.Index ="-1"
go: LinkPanel.Alignment ="10.5" go: LinkPanel.Orientation ="Along" />
<TextBlock Text ="Left"

go: LinkPanel.Offset ="0 -10" go: LinkPanel.Orientation ="Upright" />
<TextBlock Text ="Middle"

go: LinkPanel.Offset ="00" go: LinkPanel.Orientation ="Upright" />
<TextBlock Text ="Right"
go: LinkPanel.Offset ="010" go: LinkPanel.Orientation ="Upright" />

</ go: LinkPanel >
</ DataTemplate >

TheLinkPanel.Offseattached property controls where to position the element relative to a point on a
segment of the link A positive value for the Y offset moves the label element towards the right side of the
link, as seen going in the direction of the link. Naturaliegative value for the Y offset moves it towards
the left side.

The segment is specified by thenkPanel.Indexattached property, which defaults to the middle of the

whole link. The offset is rotated according to the angle formed by that link segmené are the results,

with the nodes at different relative positions to demonstrate how the labels follow the (only) segment of the
link.

Beta
Beta

Alpha Alpha

TheLinkPanel.Orientatiorattached property controls the angle of the label relative to the angle of the link
segment. The value éflong, as you have seen above with arrowheads, results in a label angle that is the
alkyYS Fa (KS asS3aysyupahtis isgid foflementskcda@ining tekt deSause the text
will not be upside down, althoudike Alongit will always be angled to follow the link. To continue the
counter-clockwiserotation of the Beta node around the Alpha node:

Alpha

Left
Alpha—Nddte—>Beta
Right

Beta

When you specify theinkPanel.Indexyou can position labels at places other than the middle of the link.

The index of zero is at the very beginning of the lmkalue of one is at the next point in the route.

Negative values are permittegii KS& 02dzy i R2 6y T NER, WithindeR-1atthevéry &y R 2 F
point of the link.

<TextBlock Text ="From" go: LinkPanel.Index ="0"
go: LinkPanel.Offset ="NaN NaN" go: LinkPanel.Orientation ="Upright" />
<TextBlock Text ="To" go: LinkPanel.Index ="-1"

go: LinkPanel.Offset ="NaN NaN" go: LinkPanel.Orientation ="Upright" />

. - Beta ‘—_,”/"N ph =
M Bets FTGﬂ‘l

Alpha To

The uses oNaNin the Offsetmeanhalf the width and halthe height of the label element, which is
convenient when the size of the label element may vary.

Links need not be straightith a single segmentHere areexamples ofOrthogonalrouting and ofBezier
curves, with the middle label having two lines of text:

Alpha _From Mid

Alpha 2 - (abo

=|z &£ =

3 - Beta Alpha
__l"N S
To = O
Beta 2 \Mid “r

Label

Labels need not b&extBlocls. The defaultLinkPanelOrientationis None, meaning that the label element
is not rotated atall. For example:

<! -- LinkPanel labels in Silverlight - >
<go: NodePanel go: LinkPanel.Index ="0" go: LinkPanel.Offset ="55" >
<go: NodeShape go: NodePanel.Figure ="EightPointedStar" Fill ="Red"

Width ="10" Height ="10"/>
</ go: NodePanel >
<Button Content ="?" Click ="Button_Click" />

<! -- LinkPanel labels in WPF - >
<go: NodeShape go: LinkPanel.Index ="0" go: LinkPanel.Offset ="55"
go: NodePanel.Figure ="EightPointedStar" Fill ="Red"

Width ="10" Height ="10"/>
<Button Content ="?" Click ="Button_Click" />

]

Bsta

Alpha

Link Connection Points on Nodes

In the exampleabove you have seen how each link will end at the edge of the node. To illustrate this
further, noticein the following screenshot whettde arowheads appear to terminate N2 dzy R K S
node, around the rectangular bounds of the text:

al

t

Epsilon
Eta

If the node is not shaped like a rectangle, the link will connect at the edge.

<DataTemplate x: Key="NodeTemplate 1">
<go: NodePanel go: Node.SelectionAdorned ="True">
<go: NodeShape go: NodePanel .Figure ="OrGate" Width ="70" Height ="70"
Stroke ="Black" StrokeThickness ="1"
Fill ="{ Binding Path =Data.Color,

Converter ={ StaticResource theStringBrushConverter n >
<TextBlock Text ="{ Binding Path =Data.Key}' TextAlignment ="Center"
HorizontalAlignment ="Center" VerticalAlignment ="Center" />

</ go: NodePanel >
</ DataTemplate >

But what if you want to limit the points at which links may connect to a node? You can do so by setting the
Node.FromSpoandNode.ToSpoattached properties on the root visual element of the nodene default

value isSpot.None which means to calculate point along the edge of the element. But you can specify

spot values that describe particular positions on the element. For example:

<DataTemplate x: Key="NodeTemplate2" >
<TextBlock Text ="{ Binding Path =Data.Key}" go: Node.SelectionAdorned ="True"
go: Node.ToSpot ="MiddleLeft" go: Node.FromSpot ="MiddleRight" />
</ DataTemplate >

This specifies that links coming into this node connect at the middle of the left side, and that links going out
of this node connect at the middle of the right sidSuch a convention is appropriate for diagrams that have
a general sense of direction to them, such as the following one which goes from left to right:

Epsilon
Beta
Zeta
Gamm Alpha
Delta
Theta

You can also specify that the links go into a node not at a single spot but spread out along o@haide.
the previous example to use:

go: Node.ToSpot ="LeftSide" go: Node.FromSpot ="RightSide"

And you will get:
/Epsﬂon
Beta
Zeta
Gam >Hlpha—-ﬂ__,_|q__+Et
3
Delta

Theta

Of course specifying a side works haily for nodes that are basically rectangular and probably larger than
Ay GUKA& OlFaSo { 2 f S {tdndakeledRRnode biggBrNRS NJ | NP dzy R G KS

<DataTemplate x: Key="NodeTemplate 3">
<Border BorderBrush ="Black" BorderThickness ="1" Padding ="3"
go: Node.SelectionAdorned ="True"
go: Node.ToSpot ="LeftSide" go: Node.FromSpot ="RightSide" >
<TextBlock Text ="{ Binding Path =Data.Key}" />
</ Border >
</ DataTemplate >

Note how the attachecdhode properties have been moved to the new ragiement of the data template.
This node template with the same data results in:

Epsilon
Beta
/ feta
Gamma Alpha
N\ Eta
Delta
Theta

Of course you can use different kindsRdutes for the link template Consider

<go: Link.Route >
<go: Route Curve ="Bezier" />
</ go: Link.Route >

Epsilen
Beta
/ Zeta
Gamma Alpha
AN
Delta
Theta

Or.
<go: Link.Route >
<go: Route Routing ="Orthogonal" Corner ="10"/>
</ go: Link.Route >
Epsilen
Beta
J—b Zeta
Gamma Alpha
L)- Eta
Delta

Theta

Ports on Nodes

Although you have some control over where links will connect at a node (at a particular spot, along one or
more sides, or at the intersection with the edgtijere are times when you want to have different logical

and graphical places at which links shoebehnect. The elements to which a link may connect are called
ports. There may be any number of ports in a node. By default there is just one port, the root visual
element, which results in the effect of having the whole node act as the port, as yeuskan above.

Support for multiple ports is only possibleairaphLinksModebecause only when you have separate data
for each link can you attach information describing which port the link should connect to.

To declare that a particular element is arpset theNode.Portldattached property on it.Unlike most of

the Partand Nodeattached propertieswhichmay only be applied to the root visual element of the node,

the port-related Nodeattached properties may apply to any element in the visual tethe node. These

FGGF OKSR LINPLISNIASE KI@S yIFYySa (GKFG adlr NI 6A0GK at

<DataTemplate x: Key="NodeTemplate 4">

<Border BorderBrush ="Black" BorderThickness ="1"
go: Node.SelectionAdorned ="True">
<Grid Background ="LightGray">

<Grid.ColumnDefinitions >
<ColumnDefinition Width ="Auto" />
<ColumnDefinition Width ="*" />
<ColumnDefinition Width ="Auto" />

</ Grid.ColumnDefinitions >

<Grid.RowDefinitions >

<RowDefinition Height ="Auto" />
<RowDefinition Height ="*"/>
<RowDefinition Height ="*"/>
</ Grid.RowDefinitions >
<TextBlock Grid.Column ="0" Grid.Row ="0" Grid.ColumnSpan ="3"
Text ="{ Binding Path =Data.Key}" TextAlignment ="Center"
FontWeight ="Bold" TextWrapping ="Wrap" Margin ="4,4,4,2" />

<StackPanel Grid.Column ="0" Grid.Row ="1" Orientation ="Horizontal">
<l-- this Rectangle i s a port, identified with the string
links only come into it at the middle of the left side - >
<Rectangle Width ="6" Height ="6" Fill ="Black"

go: Node.Portld ="A" go: Node.ToSpot ="MiddleLeft" />
<TextBlock Text ="A" />
</ StackPanel >

<StackPanel Grid.Column ="0" Grid.Row ="2" Orientation ="Horizontal">
<! -- this Rectangle is another input port , hamed -->Bo
<Rectangle Width ="6" Height ="6" Fill ="Black"

go: Node.Portld ="B" go: Node.ToSpot ="MiddleLeft" />
<TextBlock Text ="B" />
</ StackPanel >

<StackPanel Grid.Column ="2" Grid.Row ="1" Grid.RowSpan ="2"
Orientation ~ ="Horizontal" VerticalAlignment ="Center">
<TextBlock Text ="Out" />
<! -- this Rectangle is another port, identified with the st
links only go out of it at the middle of the right side - >
<Rectangle Width ="6" Height ="6" Fill ="Black"

go: Node.Portld ="Out" go: Node.FromSpot ="MiddleRight" />
</ StackPanel >
</ Grid >

</ Border >
</ DataTemplate >

Each port has Blode.Portldthat corresponds to the optiorigport parameter information aboth ends of
each link To avoid visual confusion in this examiblere is also & extBlocknext to each port, showing the
same string.

This node template, combined withGraphLinksModelnddatasuch as:
var model= new GraphLinksModel <MyData, String , String , MyLinkData >();
model.NodesSource = new ObservableCollection <MyData >() {
new MyData() { Key= "Add1" 1},

new MyData() { Key= "Add2" },
new MyData() { Key= "Subtract” H

%
model.LinksSource = new ObservableCollection <MyLinkData >(){
new MyLinkData () {From= "Addl" , FromPort="Out" , To= "Subtract" , ToPort= "A" 1},
new MyLinkData () {From= "Add2" , FromPort= "Out" , To= "Subtract* , ToPort= "B" 1},
%

myDiagram.Model = model;

can produce a diagram like:

Data Templates for Groups
To define the appearance of group nodes, you can sebilagram.GroupTemplateroperty. The default
template produces the following simple representationofadgrdi Ay (KA & OFasS a9lLJaAf 2

Epsilon
Alphg—»Gamma——»Delta+—»Beta

To customize the appearance of a group, you could define a template such as:

<DataTemplate x: Key="GroupTemplate 1">
<StackPanel go: Node.LocationElementName ="myGroupPanel">
<!l-- This is the fAheader o foeor the group
<TextBlock x: Name="Label" Text ="{ Binding Path =Data.Key}"

FontSize ="18" FontWeight ="Bold" Foreground ="Green"

HorizontalAlignment ="Center"/>
<Border x: Name"myBorder" CornerRadius ="5"
BorderBrush ="Green" BorderThickness ="2">

<! -- The GroupPanel is the placeholder for member parts - >

<go: GroupPanel x: Name"myGroupPanel" Padding ="5" />
</ Border >
<I'-- This is some extra information for the group - >
<TextBlock Text ="BottomRight" HorizontalAlignment ="Right" />

</ StackPanel >
</ DataTemplate >

Epsilon

Alph a%@amma—hDelta}—)Eeta

BottomRight

Notice thatthere is aGroupPaneklement inside théBorder. You use &roupPanehs the placeholder for
all of the nodes and links that are members of the group. The meibdes andLinks are notvisual
children of the panel or of the group nodéghey are independent parts in the diagram.

If you use &GroupPaneland if it is not e root visual element of the data template, it must be named as
the Node.LocationElementNamfor the group. Just give theroupPanelh Nameand refer to it via the
attached propertyNode.LocationElementNamen the root element. This means that thode® location

will always be the same as ti@&oupPaneRd f 20l GA 2y X S@Sy GraupPadeBhinge/ (a

size or move around with respect to the panel.

<DataTemplate x: Key="GroupTemplate2">
<Border x: Name"myBorder" CornerRadius ="5"
BorderBrush ="Green" BorderThickness ="2"
go: Node.LocationElementName ="myGroupPanel">
<StackPanel >
<TextBlock x: Name="Label" Text ="{ Binding Path =Data.Key}"
FontSize ="16" FontWeight ="Bold" Foreground ="Green

HorizontalAlignment ="Center" />
<go: GroupPanel x: Name"myGroupPanel" Padding ="5" />
<TextBlock Text ="BottomRight" FontSize ="7"
HorizontalAlignment ="Right" />
</ StackPanel >

</ Border >
</ DataTemplate >

Epsilon
alph Gamma——»Del ta
BaottamiRlgh

Thesecondt ONBSy aK2i aKz2ga (GKS NBadzZ G 2F RN} 3IIAyYy3T

2 d:

Epsilon

Alpha /Delh Beta
Gamma

BaottomAligh

AGroupPaneblways encloses its memblioded = S @Sy gKAfS (4KS y2RSa |

want this behavior during dragging, for example in order to pernNbdeto be dragged outside of its
Group, you can seGroupPanel.SurroundsMembersAfterDrdp true. This changes the behavior of the
GroupPaneko that it does not resize during a drag until the drop is completed.

Collapsing and Expanding SubGraphs
It is common to snplify graphs by collapsing subgraphs into a single node. One way to implement
collapsible subgraphs is with a button.

<! -- show eithera"+"ora" - " as the Button content - >
<go: BooleanStringConverter x: Key="theButtonConverter"
TrueString ="-" FalseString ="+"/>

<DataTemplate x: Key="GroupTemplate">
<Border CornerRadius ="5" BorderThickness ="2" Background ="Transparent"
BorderBrush ="{ Binding Path =Data.Color,
Converter ={ StaticResource theBrushConverter }}"

go: Part.SelectionAdorned ="True"
go: Node.LocationElementName ="myGroupPanel"
go: Group.IsSubGraphExpanded ="False">
<! -- go: Group.IsSubGraphExpanded ="False" causes it to start collapsed - >
<StackPanel >
<StackPanel Orientation ="Horizontal" HorizontalAlignment ="Left">

<Button x: Name="myCollapseExpandButton"
Click ="CollapseExpandButton_Click"
Content ="{ Binding Path =Group.IsExpandedSubGraph,
Converter ={ StaticResource theButtonConverter ha
Width ="20" Margin ="005 0"/>
<TextBlock Text ="{ Binding Path =Data.Key}" FontWeight ="Bold" />
</ StackPanel >
<go: GroupPanel x: Name"myGroupPanel" Padding ="5"/>
</ StackPanel >
<! -- each Group can have its own Layout -- >
<go: Group.Layout >
<! -- this Layout is performed whenever any nested Group changes size - >
<go: LayeredDigraphLayout Direction ="90"
Conditions ="Standard GroupSizeChanged" />
</ go: Group.Layout >
</ Border >
</ DataTemplate >

Note that theButton.Contentis bound to theGroup.IsExpandedSubGragmoperty, via a converter that

O2y@SNIia UKS 022ftSly @I fdzS -di® SAGKSNI §KS au0NRAYy3

Collapsed it might appear as:

I
Ny

a

SubGraph 19]

TheButton.Clickevent handler might be defined as:

private void CollapseExpandButton_Click(object sender,

}

/I the Button is in the visual tree of a Node

Button button=(Button)sender;

Group sg= Part .FindAncestor< Group >(button);

if (sg!'= null){
SimpleData subgraphdata = (SimpleData)sg.Data;
/I always make changes within a transaction
myDiagram.StartTransaction("CollapseExpand");
/I toggle whether this node is expanded or collapsed
sg.IsExpandedSubGraph = !sg.IsExpandedSubGraph;
myDiagram.CommitTransaction("CollapseExpand");

}

Expanded it might look like:

E] SubGraph 19

Y
#C5AERF #B6ODD5

SubGraph 21]

#D2B39F

L J

v
#DACATE
|

AY 2 NB 4 & implghientatidn féora Groupmight use arExpander

<DataTemplate x: Key="GroupTemplate6">

<Expander Header ="{ Binding Path =Data.Name}"

RoutedEventArg s e){

IsExpanded ="{ Binding Path =Group.IsExpandedSubGraph, Mode=TwoWay}"

go: Node.LocationElementName ="myGroupPanel">

<Border BorderBrush ="Green" BorderThickness ="2"

Background ="Transparent" CornerRadius ="5">
<go: GroupPanel x: Name"myGroupPanel* Padding ="6"/>
</ Border >

</ Expander >
</ DataTemplate >

Note how theExpander.IsExpandegroperty is databound toGroup.IsExpandedSubGraph

v | SubGraph2 # | SubGraph2 # | SubGraph2

+ | SubGraphl A | SubGraphl

Groups with Ports

The previous examples did not treat grags nodes in their own right. As with reguNwmdes, a link to a

Groupg Aff o6& RSTFlLdzZ G GNBIG (EGBNISEKRIK BLIYERSO2 Ay SEEBA 2y §
OAyaiuSIR 2F (2 aDFYYF£0 FyR a9lLlAaAf2yé O6AyautSIR 27
saeenshot. Thea ! f LIKI ¢ | Yy R d&. S i bvedtoynakeSearertke c@nBectir®s oythe dfoup.

Epsilon
Gamma——-aDelta

BattamSlgh

™~

Alpha Beta

The followingexample gives group nodes three ports on the left and two on the right, spaced equally within

the thick border. Theinput portson the leftt NB vy I YSR &l SNRB £ X a2y Somthet yR 4
rightt NB Yy I YSR & h dziTHiséexampleRhasa telztilabélsto visually name each port.

<DataTemplate x: Key="GroupTemplate3 ">

<Border x: Name"myBorder" CornerRadius ="5"
BorderB rush ="LightGreen" BorderThickness ="10"

go: Node.LocationElementName ="myGroupPanel">
<go: GroupPanel x: Name"myGroupPanel" Padding ="105 105" Margin ="02000" >
<TextBlock x: Name="Label" go: Node.Portld =""
Text ="{ Binding Path =Data.Key}" FontSize ="14" Foreground ="Navy"
go: SpotPanel.Spot ="100 -2" go: SpotPanel.Alignment ="11"/>
<Rectangle go: SpotPanel.Spot ="00.25" go: SpotPanel.Alignment ="10.5"
Fill ="Blue" Width ="10" Height ="10" go: Node.Portld ="zero" />
<Rectangle go: SpotPanel.Spot ="0 0.50" go: SpotPanel.Alignment ="10.5"
Fill ="Blue" Width ="10" Height ="10" go: Node.Portld ="one" />
<Rectangle go: SpotPanel.Spot ="00.75" go: SpotPanel.Alignment ="10.5"
Fill ="Blue" Width ="10" Height ="10" go: Node.Portld ="two" />

<Rectangle go: SpotPanel.Spot ="10.33" go: SpotPanel.Alignment ="00.5"

Fill ="Orange" Width ="10" Height ="10" go: Node.Portld ="OutA" />

<Rectangle go: SpotPanel.Spot ="10.67" go: SpotPanel.Alignment ="00.5"
Fill ="Orange" Width ="10" Height ="10" go: Node.Portld ="OutB" />
</ go: GroupPanel >
</ Border >

</ DataTemplate >

Epsilon

|
Gamma

Delta
— »Beta

This diagram was created with the same node data as before buthatfollowing link data:

model.LinksSource = new ObservableCollection <MyLinkData >(){
new MyLinkData () { From= "Alpha" , To= "Epsilon" , ToPort= "two" },
new MyLinkData () { From= "Gamma", To= "Delta" },
new MyLinkData (){From= "Epsilon" ,To= "Beta" , FromPort= "OutA" 1},

h

Groups as Independent Containers

The above examples all intend to have each group exactly surround its collection of member nodes plus
some padding. However, there are other scenarios where you want to treat each group assizixieox
where the user might add or remove items (i.e. nodes) via-dragdrop.

<DataTemplate x: Key="GroupTemplate Fixed Size ">
<StackPanel go: Node.LocationElementName ="main"
go: Part.SelectionElementName ="main"
go: Part.SelectionAdorned ="True"
go: Part.DropOntoBehavior ="AddsToGroup">
<TextBlock Text ="{ Binding Path =Data.Key}" FontWeight ="Bold"
HorizontalAlignment ="Left" />
<Rectangle x: Name="main" Fill ="White" StrokeThickness ="3"
Stroke ="{ Binding Path =Part.IsDropOntoAccepted,
Converter ={ StaticResource theStrokeChooser }}"
Width ="100" Height ="100"/>
</ StackPanel >
</ DataTemplate >

Note the addition ofjo: Part.DropOntoBehavior ="AddsToGroup" ® ,2dz Oy SylLoftS
behavior by adding this attached property on groups and by also sédtiaggingTool.DropOntoEnabletd
true:

<go: Diagram Grid.Row ="0" ... >
<go: Diagram.DraggingTool >
<go: DraggingTool DropOntoEnabled ="True" />
</ go: Diagram.DraggingTool >
</ go: Diagram >

This will allow users to drag nodes into and out of this rectangular box. When the drop occurs, the nodes
become members of the group. That means that copying the group will alsdlfepyembers, and that
deleting the group will also delete the members. Dragging a node out of such a group also removes it from
that group¢ copying or deleting the group will have no effect on the dragged node.

To help provide feedback to the user, ntbe binding of theRectangle.Stroken the
Part.IsDropOntoAcceptegroperty. TheDraggingTooWill temporarily set thafPartproperty during the
dragging process if the dragged nodes might be added toGhatip. You can override the
DraggingTool.IsValMember predicate to return false if you do not waatparticular node to become a
member of a particular group. For example, in the Planogram samsplalidMemberis defined to return
false when the dragged node is a Rack or a Shelf, to prevent nesting of Racks or Shelves.

The Planogram sample also demonstrates how these groups can be resizable by the user. Because the
template is not using &roupPanelthere areno inherent limits on where the group appears to be relative
to its member nodes.

However, there may be times when you want to uséraupPanemost of the time, but you still want to
support dragand-drop re-parenting of nodes between groups. The prablwith the use of &roupPanels

that as the user tries to drag a member node out of a group, the group automatically expands to include its
member node. In this particular case you can u§&@pPanelvhen you also set its
SurroundsMembersAfterDroproperty to true. Basically the autsizing behavior of &roupPanels

temporarily disabled during a move conducted by BraggingToal

<DataTemplate x: Key="GroupTemplateAddableRemovable">
<StackPanel go: Node.LocationElementName ="main"
go: Part.SelectionElementName ="main"
go: Part.SelectionAdorned ="True"
go: Part.DropOntoBehavior ="AddsToGroup">
<TextBlock Text ="{ Binding Path =Data.Key}" FontWeight ="Bold"
HorizontalAlignment ="Left" />
<Border Background ="White" BorderThickness ="3" CornerRadius ="5"
BorderBrush ="{ Binding Path =Part.IsDropOntoAccepted,
Converter ={ StaticResource theStrokeChooser }}">
<go: GroupPanel x: Name"main" SurroundsMembersAfterDrop ="True"
MinwWidth ="100" MinHeight ="100"/>
</ Border >
</ StackPanel >
</ DataTemplate >

Layout
The positioning oFrameworkElemerd inNodesis achieved with the standard WPF/Silverlight layout
system, primaity the use of various kinds Bfanes.

In GoXam diagrams, you can position a node by settimta-bindingin XAML theNode.Locatiomattached
property on its root visual element, or by setting programmaticallyNwoele.Locatiorproperty. And users
canreposition a node by dragging it.

However, there are also some automated means of positioning the nodes. These are implemented by
severalDiagramLayoutlassesprimarily. GridLayout CircularLayoutTreeLayoutForceDirectedLayout
and LayeredDigraphLayoutAny layout can work with any kind of model.

A layout can be associated with a whole diagram by settindpibgram.Layouproperty.

<go: Diagram ... >
<go: Diagram.Layout >
<go: TreeLayout. . . />
</ go: Diagram.Layout >
</ go: Diagram >

A layout can also be associated witbeoupby setting theGroup.Layoutattached property. If &rouphas

a layout, that layout will only position the members (nodes and links) of the group, arididgearQ & f | & 2 dz(

will not operate on those mabers but will treat the group as a single node.

Because there may be many layouts present in a diagranDidgram.LayoutManageis responsible for
managing them, including deciding when they need to run againdefault there are a number of events
that may cause a Hayout. These cases are specified bylthgoutChangenumeration, such as
LayoutChangeNodeAddedor LayoutChangeLinkRemoved

EachDiagramLayouhas aConditionsproperty that governs whichayoutChange will cause a rHayout.

The default behavior is to perform another layout when any node, link, or group membership is added or
removed, or when &ayoutis replaced or when a template is replacdd¥ &2 dz R2y Ql g y i
happen when gers delete nodes or links, you could say:

<go: TreeLayout Conditions ="NodeAdded LinkAdded" . />

Then only when the user adds a node or draws a new link (or reconnects an existing one) will a layout
automatically occur.

The most commonly sgropertieson LayoutManageiinvolve animation.By defaultthe
LayoutManager.Animategbroperty is true,so thateach layout will caus®p-levelnodes to move smoothly
from their original location to their new ongNodes that are members of groups wilbwe instantly.)The
default animation time i$00 milliseconds.

<go: Diagram ... >
<go: Diagram.LayoutManager >
<go: LayoutManager Animat ionTime ="1000"/>
</ go: Diagram.LayoutManager >
<go: Diagram.Layout >
<go: TreeLayout . . . />
</ go: Diagram.Layout >
</ go: Diagram >

Normally all of the nodes and links in the diagram are laid out bypiagram.Layout You can cause a node
or link not to participate in a layout by setting RartLayoutldLINR LISNJi & (G2 dab2ySé¢ 2y
the nade or link template:

GF

go: Part.Layoutld ="None"

Nodes that are not laid out will not be positioned; links that are not laid out will not be routed specially and
will not be considered when arranging the connected nodes.

TreelLayout
The simplest layounhvolves tree structureslt is very fast and can handle many nodes.

<go: Diagram ... >
<go: Diagram.Layout >
<go: TreeLayout />
</ go: Diagram.Layout >
</ go: Diagram >

With a model containing node data forming a tree structure, the result mightli@ek

I . e
~—8

There are is a lot of customization possible for treAaglecontrols the general growth directiogit must
be 0 (towards the right), 90 (downward), 180 (leftward) or 270 (upwatdignmentcontrols how the
parent node is positioned relative fits children.

<go: TreeLayout Angle ="90" Alignment ="CenterSubtrees" />

[EENTE™>

1 Window3

Rho Tau Upslon Phi

You can control how closely the layers and the nodes are placed. For example, you can really pack them
close together with:

<go: TreeLayout LayerSpacing ="20" NodeSpacing ="0"/>

(& Window3 A Lol o0 e e |

Delta
Gamma

Epsilon Zeta

lota Mu
-8 % ML

Alpha Beta D'Ejj-i Kappa X
Theta —)-Efj

Lambda | Omicron

’ﬁj—(Tau Rho

Eta Pi

Sigma

Upsilon Phi

Omega

You can have the children of each node be sorted. By defaulirdgel ayout. Comparecompares the
Node.Textproperty. So if theDiagram.NodeTemplatincludes:

go: Part.Text ="{ Binding Path =Data.Key}"
on the root element, and if you specify tAeeeLayout.Sortingroperty:
<go: TreeLayout Angle ="90" Alignment ="Start" Sorting ="Ascending" />

The set of children for each node is alphabetized. (In this case that means alphabetical ordering of the
English names of the letters of the Greek alphabet.)

If your graph structure ismostly trdfeA 1 S5 o6dzi @2dz K @S | ¥S6 GSEGNI ¢ f
purpose of deciding the tree structure, you can set Bart.Layoutldattached property on those links to be
Gb2ySé¢ o

You can experiment with th€reeLayoutproperties in the TLayowgample of the demo.

ForceDirectedLayout

TheForceDirectedLayoutises forces similar to physical forces to push and pull nodes. Links are treated as if
they were springs of a particular length and stiffness. Each node has an electrical charge that repels other
nodes.

An example of &orceDirectedLayout

<go: ForceDire ctedLayout DefaultSpringLength ="10" DefaultElectricalCharge ="50" />

For small nodes that do not have too much connectivity you can use smaller values than the defaults of 50
for the spring length and 150 for the electrical charge.

Unlike the other layoutd:orceDirectedLayouproduces incremental results, so running it for longes. (
values ofForceDirectedLayout.MaxIterations 100) may improve the results.

There are a number of properties that control the behavior of the laydiie ones most commonly set
includeConditionsand the5 S F | grbpériies.

You can experiment with theorceDirectedlayoutproperties in the FDLayosample of the demo.

LayeredDigraphLayout
When the nodes of a graph can be naturally organized interalyut the structure is not treike, you can
uselLayeredDigraphLayout

This layout can handle multiple links coming into a node as well as links that create cycles. However, it is
slower thanTreeLayoutand it does not have tregpecific customizatiofeatures.

As with the other layouts, there are a number of properties that control its behatibe ones most
commonly set includ®irection, LayerSpacingColumnSpacingandConditions

You can experiment with thieayeredDigraphayoutproperties in tie LDLayousample of the demo.

CircularLayout
TheCircularLayoupositions all of its nodes in a circular or elliptical pattern.

There are a number of properties that control the behavior of the laydiiese include how the nodes are
ordered, how they are spaced, the X radius of the ellipse, the aspect ratio of the ellipse, and the start and
sweep angles of the ellipse that are occupied.

You can experiment with th€ircularLayouproperties in the CLayit sample of the demao.

Selection
Users can typically select and deselect parts by clicking on them or by clicking in the background. You can
programmatically seleair deselecta Partby settingits Part.IsSelecteghroperty.

TheDiagramkeeps a cofiction of selected partsDiagram.SelectedPartsltalso has reference to the
primary selected partDiagram.SelectedPartin order to show detail information about the primary
selection it is natural to bind tBiagram.SelectedPartlf you only want tdiind to the primary selection
when it is aNode (and not aGroup), bind toDiagram.SelectedNode Similarly, you can bind to
Diagram.SelectedGroupr Diagram.SelectedLink.

You can limit how many parts are selected by setidggram.MaximumSelectionCount

You carshow that a part is selected usiegher or both of two general techniques: addiAgornments or
changing the appearance of some of the elements of the visual tree.

Selection Adornments
Itis common to display that a part is selected by having it show a selédtionmentwhen the part is
selected. That is accomplished by setting Bzet. SelectionAdornedttached property to true:

<DataTemplate x: Key="NodeTemplatel">
<Grid go: Node.Se lectionAdorned ="True"...>

</ Grid >
</ DataTemplate >

This is thedefault selection adornment template, which defines what is shown when the part becomes
selected:

<DataTemplate > <!-- Silverlight - >
<Path go: NodePanel.Figure ="None" Stroke ="DodgerBlue" StrokeThickness — ="3"
go: Part.Selectable ="False" />

</ DataTemplate >

<DataTemplate > <!-- WPF-- >
<go: SelectionHandle Stroke ="{ x: Static SystemColors . HighlightBrush }
StrokeThickness ="3" go: Part.Selectable ="False" SnapsToDevicePixels ="True" />
</ DataTemplate >

TheseAdornmentshapes automatically take the shape of fRameworkElementi K & A& (KS &
SelectionElement

But you can customize the elements that are shown when a part is selected by specifying its
SelectionAdornmentTemplate For example, you can arrange four triangles to be positioned outside of the
adorned element by using@rid with a SpotPanein the middle cell:

<DataTemplate = x: Key="OuterSelectionAdornmentTemplate">

<Grid go: Node.LocationElementName ="Main">
<Grid.ColumnDefinitions >
<ColumnDefinition Width ="Auto" />
<ColumnDefinition Width ="Auto" />
<ColumnDefinition Width ="Auto" />
</ Grid.ColumnDefinitions >
<Grid.RowDefinitions >

<RowDefinition Height ="Auto" />
<RowDefinition Height ="Auto" />
<RowDefinition Height ="Auto" />

</ Grid.RowDefinitions >
<!-- wheninan Adornment , automatically sized to the AdornedElement - >
<go: SpotPanel Grid.Row ="1" Grid.Column ="1" x: Name"Main"
HorizontalAlignment ="Center" VerticalAlignment ="Center" />

<! -- demonstrate triangles around the AdornedElement - >
<l-- inWPF can use plain go:NodeShape ;

in Silverlight must surround it with a go:NodePanel -- >
<go: NodeShape Grid.Row ="0" Grid.Column ="1" Margin ="10"

HorizontalAlignment ="Center" VerticalAlignment ="Center"

Fill ="LightGreen" go: NodePanel.Figure ="TriangleUp"

Width ="20" Height ="20"/>

<go: NodeShape Grid.Row ="1" Grid.Column ="0" Margin ="10"
HorizontalAlignment ="Center" VerticalAlignment ="Center"
Fill ="LightGreen" go: NodePanel.Figure ="TriangleLeft"
Width ="20" Heigh t ="20" />

<go: NodeShape Grid.Row ="1" Grid.Column ="2" Margin ="10"
HorizontalAlignment ="Center" VerticalAlignment ="Center"
Fill ="LightGreen" go: NodePanel.Figure ="TriangleRight"
Width ="20" Height ="20"/>

<go: NodeShape Grid.Row ="2" Grid.Column ="1" Margin ="10"

HorizontalAlignment ="Center" VerticalAlignment ="Center"
Fill ="LightGreen" go: NodePanel.Figure ="TriangleDown"
Width ="20" Height ="20"/>

</ Grid >

</ DataTemplate >

I SNBQa ¢KI (i @& 2nxdeYobtd khselecie8 &nd selediel using this adornment template:

da™y

w»

nodel
Some editable text

nodel
some editable text

If you want to display some elements within the bounds, more or less, of the adorned element, you can use

a SpotPanein your adornment template:

<DataTemplate
<l -

x: Key="InnerSelectionAdornmentTemplate">
automatically sized to the AdornedElement

>

<go: SpotPanel Grid.Row ="1" Grid.Column ="1"

HorizontalAlignment ="Center" VerticalAlignment ="Center">
<! -- demonstrate triangles just inside the Ad ornedElement -- >
<! -- in WPF can use plain go:NodeShape ;

in Silverlight must surround it with a go:NodePanel -- >

<go: NodeShape go: SpotPanel.Spot ="MiddleTop"
go: SpotPanel.Alignment ="MiddleTop"
Fill ="LightGreen" go: NodePanel.Figure ="TriangleUp"
Width ="10" Height ="10"/>

<go: NodeShape go: SpotPanel.Spot ="MiddleLeft"
go: SpotPanel.Alignment ="MiddleLeft"
Fill ="LightGreen" go: NodePanel.Figure ="Trian gleLeft"
Width ="10" Height ="10"/>

<go: NodeShape go: SpotPanel.Spot ="MiddleRight"
go: SpotPanel.Alignment ="MiddleRight"
Fill ="LightGreen" go: NodePanel.Figure ="TriangleRight"
Width ="10" Height ="10"/>

<go: NodeShape go: SpotPanel.Spot ="MiddleBottom"

go: SpotPanel.Alignment

Fill ="LightGreen"
Width ="10" Height ="10"/>
</ go: SpotPa nel >
</ DataTemplate >
| SNBEQa ¢KId &2dz YAIKG &S
nodel nodel

Some editable text Some edi*able text

Selection Appearance Changes

="MiddleBottom"
go: NodePanel.Figure

="TriangleDown"

Yy2RSZ

020K dzyasSt.

However one canlso modify the appearance of a selecteart. Basically you can bind properties of your
node to values that depend on theart.IsSelectegbroperty. For example, you could define a converter that
returned a red brush if the input value is true or that returned a normal brush if the value is false.

<go: BooleanBrushConverter
TrueColor
<go: BooleanBrushConverter.FalseBrush
<LinearGradientBrush StartPoint
<GradientStop Color ="White"
<GradientStop Color ="LightBlue"

x: Key="theSelectedBrushConverter "

="Red">

>
="0.5,0" EndPoint ="0.5,1">
Offset ="0.0"/>

Offset ="1.0"/>

</ LinearGradientBrush >
</ go: BooleanBrushConverter.FalseBrush >
</ go: BooleanBrushConverter >

In this case, the normal brush is a linear gradient. Now we can birBlatlegroundof a panel to the brush

NBUdZNY SR 068 GKA& O2y dSNI S8HeddpiopeRy: 2y UG KS O fdzS 2F

<DataTemplate x: Key="NodeTemplate2">
<! -- note that the binding path is Path =Node. xxx not Path =Data. xxx --
<Grid Background ="{ Binding Path =Node.IsSelected,

>

Converter ={ StaticResource theSelected BrushConverter }}'>

</ Grid >
</ DataTemplate >

Note how the binding goes to theart.IsSelectegbroperty, not toData.lsSelectegbecause there is no

IsSelectedoroperty on the data class.

As a concrete example:

<DataTemplate x: Key="NodeTemplate3">
<Border BorderBrush ="Gray" BorderThickness ="2" CornerRadius ="5"
Background ="{ Binding Path =Part.IsSelected,

Converter ={ StaticResource theSelectedBrushConverter
go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}">

<Border.Effect >
<DropShadowEffect />
</ Border.Effect >
<StackPanel Orientation ="Vertical">
<go: NodePanel HorizontalAlignment ="Center">
<Path go: NodePanel .Figure ="Arrow" Width ="25" Height ="25"
Fill ="{ Binding Path =Data.Color,
Converter ={ StaticResource theStringBrushConverter
</ go: NodePanel >
<TextBlock x: Name="Text" Text ="{ Binding Path =Data.Key}"
HorizontalAlignment ="Center" />
</ StackPanel >
</ Border >
</ DataTemplate >

{2 6KSy e2dz 48t 380G 645S8tdlé FyR a. 8iléx

If you want to execute your own code when the selection changes, you can handle the
Diagram.SelectionChangezlent.

>

oY

[antN
A
(s}
m/

i

LILIS |- |

Content Alignment and Stretch

TheDiagramPaneis the panel that holds all of theayes that together hold all of th&lodes andLinks. The
DiagramPanels what supports scrolling around and zooming into the diagram. You can scroll
programmatically by settinBiagramPanel.Positioand you can zoom in or out programmatically by setting
DiagramPanel.ScaleThe user can scroll using teerollbars or thé?anningToaland the user can zoom in

or out using ContreMouseWheel.

TheDiagramPanel.DiagramBoungsoperty indicates the total extent of all of the nodes and links. This
value is automatically updated as nodes are added or remoifgehu do not want theDiagramBoundgo
always reflect the sizes and locations of all of the nodes and links, you can séted8oundgproperty.
However, if there are any nodes that are located beyondRxedBoundsit is possible that one cannot
scroll the diagram to see them.

TheDiagramPanehasfour properties that you will find useful in controlling what is seen and where.

TheHorizontalContentAlignmenand VerticalContentAlignmenproperties determine how theliagram is
aligned in the viewporshown by theDiagramPanglwhen theDiagramBoundst the currentScalecan fit

in the viewport. If you want to keep everything centered in the diagram, set both of these properties to
G/ SE¥®SNP AGK CoKt®ITeinflateyoR tahldet these propees on theDiagram

<go: Diagram x: Name="myDiagram"
HorizontalContentAlignment ="Center" VerticalContentAlignment ="Center" />

Caution: the default values for these tv@pntrolalignment properties differ between WPF and Silverlight.

| SNBEQa a2YS NI yR2Y DiegayhBalefitihe cuidntdcald A 1a Ay (KS

Gamma

Delta

E=j

N

Lambdaq_._______E s
e

»//‘;:—:;”‘“'“”‘“
Theta

Resize thdiagramto be much smaller, and it automatically keeps the center of the diagram centered in the
DiagramPaneand shows the scrollbars.

Or, leave theDiagramsize the same, but zoom in with either Contpdlis (WPF) or Keypaulus (Silverlight),
and it also keeps the center point and shows the scrollbars.

The usercan also zoonn at a particulatmousepoint by using Contrelvheel.

i 1

[ota<€

A NE

L¥ @& 2dz R2y Qdm céntegtsito bie Kli§nedchntir@ously, use values of
HorizontalAlignment.Stretctand/or VerticalAlignment.Stretch In this context the meaning of those

SYydzYSNY A2y @I fdzSa Aa a42YSoKFEG RAFFSNBY(G GKhty y2NJ
It is common foDiagrans to use values of ! £ A 3y Y S yuihepe thie NggrisOrianually constructing the

graph by dragand-drop.

_—»Fta

L

If you want thescaleto change automatically as tHgiagramis resized, use thBiagramPanel.Stretch
property. (This isnot an alignment property, but a property to control the scale of the diagram contents.)

<go: Diagram x: Name="myDiagram" Stretch ="Uniform"
HorizontalContentAlignment ="Center" VerticalContentAlignment ="Center" />

This wil automatically rescale thRA I ANI Y &2 GKI G G K Sits.orsucénGisoRugelthid NI Y Q &
value ofStretchPolicy.UniformToFilwhich rescales the diagram so that the narrower or the shorter

distance fills up the whole area, using a scrollbagsdmll the other dimension (taller or wider). The default

value isStretchPolicy.Unstretchedwhich does not change tHeiagramPanel.Scale

When there is extra space left over, the contents are centered, according to th¥ twé A 3 yprégeyies.

RN

Finally, theDiagramPanel.Paddingroperty adds a little space to thRiagramPanel.DiagramBoungd&

avoid having the edge of tHeiagramPanetome too close to the contentBecause the default value of
Control.Paddings aThicknesof zeroon all foursides, we recommend a larger value so that the edges of
Nodes will not appear tdump againsthe edges of the Diagram

As the defaulControlTemplateabove shows, the foudiagramPaneproperties
(HorizontalContentAlignmentVerticalContentAlignmentStretch, andPadding normally get their values
from the Diagram viaTemplateBinding.

If you want to set some properties orCdagramPanebr call its methods, be sure to do so only after the
Diagram.Templaténas been applied (i.e. expanded and copied). UntilGbatrolTemplatehas been
applied, the value obiagram.PaneWwill be null.

For example if you want to establish an event handler @iagranQ) Bane| you can do so in a
Diagram.TemplateApplieéventhandler:

/I wait until the Diagram's Panel exists before establishing its event handler
myDiagram.TemplateApplied += (s,) => {
myDiagram.Panel.ViewportBoundsChanged += Panel_ViewportBoundsChanged,;

3

Initial Positioning and Scaling

TheaforementionedDiagranPanelpropertiescontrol the scale $tretch)and position
(HorizontalContentAlignmentand VerticalContentAlignmentall the time. However, it is common to want
to set the scale and/or position of the diagram after the first layowg pasitioned all of the nodesut not
thereafter. Towards that end you can set tBéagram.InitialScalend/or Diagram.InitialPosition
properties.

<go: Diagram InitialPosition ="00"... >

But there are additionabiagramproperties that are convenient for setting the initial scale and/or position
of the DiagramPanel You can set thBiagram.InitialStretchproperty toperform a onetime rescaling. For
example:

<go: Diagram x: Name="myDiagram" InitialStretch ="Uniform"
HorizontalContentAlignment ="Stretch" VerticalContentAlignment ="Stretch" />

This will perform an initial layout of the contents of the diagram, compute the new
DiagramPanel.DiagramBoungdand rescale it and position it so that everything fits. Adftnds, the user is
free to zoom in or out and to scroll around, as needed.

Two relatedDiagramproperties help position the diagram in the panel based onRhe I A NJ Y Q& 0 2 dzy R
InitialDiagramBoundsSpatnd InitialPanelSpot The former property specifies v spot of the diagram

contents should be positioned, and the latter property specifies where iDiagramPaneit should be

positioned. For example:

<go: Diagram x: Name="myDiagram"

InitialDiagramBoundsSpot ="MiddleTop" InitialPanelSpot ="MiddleTop"
HorizontalContentAlignment ="Stretch" VerticalContentAlignment ="Stretch" />

This will position the middkop point of the laidout diagram at the middlktop point of the panel.You will
need to be careful not to choose combinationsvafues that result in nothing being visible.

DiagramPaneimplements thelScrollinfointerface, so you can use those methods and properties to scroll
programmatically. ThBiagramPanel.MakeVisiblmethod is useful to scroll the view if the givBartis rot
somewhere in the viewport. THaiagramPanel.CenterParhethod is useful to try to center a givétartin

the viewport, although the panel might not be able to scroll that far, especially if the content alignment
LINELISNIIASa NS y20 a{ INBGOKE @

Tools

For flexibility and simplicity, all mouse input is redirected byBiegramii 2 32 { K SurrBkTbal NI Y Q&
By default theCurrentToolis an instance of oolManager which is responsible for finding another tool that

is ready to run and then making he newCurrentTool This causes the new tool to process mouse events
YR 1S@02FNR S@Syia dzyuAt GKS G422t RSOARS&a Al Aa
the defaultToolManagertool.

There are a number of predefined tools that edalagramhasc they are accessible as diagram properties
and can be replaced by setting those propertidgie name of the tool class is the same as the name of the
diagram property.

Some tools want to run wdn a mouseadown occurs. These tools include:

RelinkingToal for reconnecting an existirignk
LinkReshapingTopfor changing the route of kink
ResizingToglfor resizing &odeor an element within &ode
RotatingToo) for rotating aNode or an elementwithin aNode

= =4 =4 =

Some tools want to run laen a mousemove occursafter a mousedown. Thesdoolsinclude:

LinkingToo] for drawing a newiink

DraggingToqlfor moving or copying selectdtarts

DragSelectingToofor rubberband selection of somParts within a rectangular area
PanningToaqlfor panning/scrolling the diagram

=A =4 =4 =2

Some tools only want to run upon a mousg event after a mouselown. Thesdoolsinclude:

1 TextEditingToalfor in-place editing offextBlocls inselectedParts
1 ClickCreatingToolfor inserting a newNodewhere the user clicked
9 ClickSelectingToopfor selecting or deselecting &Part

Finally, there are some tools, suchsgZoomingToglthat are not normally invoked by the mouse, but
can be started explicitly by settiigjagram.CurrentTool

To change the behavior of a tool, you can set its properties in XAML and replace the correspoagiag
property. For example, to cause contdylg copies to copy the whole effective selection instead of only
the selected parts:

<go: Diagram . .. >
<go: Diagram.DraggingTool >
<gotool : DraggingTool CopiesEffectiveCollection ="True" />

</ go: Diagram.DraggingTool >
</ go: Diagram >

To remove a tool, set it to null. For example, to remove the background riizbet selectioriool:
<go: Diagram DragSelectingTool ="{ x: Null }* ... />

Removing this tool also allows tianningTooto be able to run, because by default tbeagSelectingTool
takes precedence.

As another example, it turns out that tl&ickCreatingTodk normally never eligible to run because it does
not have a value fo€ClickCreatingTool.PrototypeDataYou might find it suitable to enable it by setting that

property:

<go: Diagram . . . >
<go: Diagram.ClickCreatingTool >
<go: ClickCreatingTool >
<go: ClickCreatingTool.PrototypeData >
<local : MyData Key="Lambda" Color ="Fuchsia" />
</ go: ClickCreatingTool.PrototypeData >
</ go: ClickCreatingTool >
</ go: Diagram.ClickCreatingTool >

</ go: Diagram >

Caution: do not define a tool in XAML as the value 8fyde Setter, because only one instance of each tool
is ever created, and would thus be shared by all diagrams affected by that stiegramTooimust not be
shared by differenDiagrams.

Events
All of the predefined tools that modify the model do so within a model transaction, and they also raise an
event.

Tool Event
ClickCreatingTool NodeCreatedEvent
DraggingTool SelectionMovedEvenbr
SelectionCopiedEverur
ExternalObjectsDroppedEvent
LinkingTool LinkDrawnEvent
RelinkingTool LinkRelinkedEvent
LinkReshapingTool LinkReshapedEvent
ResizingTool NodeResizedEvent
RotatingTool NodeRotatedEvent
TextEditingTool TextEditedEvent

The other predefined tools do not have mod#ianging sideffects.

There are a number of events raised by commands, implemented b@dhenandHandler

Command

Event

Delete
Cut

SelectionDeletingEverdand
SelectionDeletedEvent

Paste ClipboardPastedEvent

Group SelectionGroupedEvent

ungroup SelectionUngroupedEvent

Theother predefined commands do not have moddlanging sideffects.

All of these events are defined on theagramclass. Eventsare implemented aRkoutedEvens in WPF and
as regular CLR events in Silverbght 6 A (| K Bvénf GKEF FAE. Ay G(KS yl YS

Mouse Clicks
A simple mouse click on a selectaBlartwill result in that part becoming selected. This is the behavior of
the ClickSelectingTool

Remember also that if you want to update some displays based on the currently selected node, you can
data-bind the Diagram.SelectedNodproperty. This was discussed in the section about selection.

If you want to perform someustomaction when the user doublelickson a part, you can define an event
handler for the part:

<DataTemplate x: Key="NodeTemplate4">
<Border
MouseLeftButtonDown ="Node_MouseLeftButtonDown">

</ Border >
</ DataTemplate >

private void Node MouseleftButtonDown(object sender, MouseButtonEventArgs e){
if (DiagramPanel .lsDoubleClick(e)) {
Node node = Part .FindAncestor< Node>(sender as UlElement);

if (node!= null && node.Data != null) {

e.Handled = true ;

MessageBox .Show("double clicked on " + node.Data.ToString());
}

}
}

You can implement context menus for nodegist defining thenin your node template:

<DataTemplate x: Key="NodeTemplate3">
<Border ... >
<ContextMenuService .ContextMenu >
<ContextMenu >
<Menultem Header ="some node command" Click ="Menultem_Click" />
</ ContextMenu >
</ ContextMenuService .ContextMenu >
</ Border >
</ DataTemplate >

private void Menultem_Click(object sender, RoutedEventArgs e){
var partdata=((FrameworkElement)sender).DataContext as PartManager . PartBinding ;

if (partdata== null || partdata.Data == null) {
MessageBoxShow("Clicked on nothing or on unbound part ");
} else {

MessageBoxShow("Clicked on data: " + partdata.Data.ToString());

}
}

In Silverlight 4 if you want to define for ti@iagrama default or background context menu, you will need to
setDiagram.ContextMenuEnabletb true.

Other Events
TheDiagramand DiagramPanetlasgsprovide a number of additional events not necessarily related to
tools or commands.

TheDiagram.InitialLayoutComplete@ventis raisedafter the LayoutManagethas performed thdirst
layout(s) after theDiagramQa G SYLJX I 0 S KI & Dagdnpanél.DihgiahBbindeks een i K S
updated. It can happen again when tBé&agram.Modelis replaced.

TheDiagram.LayoutCompletedventis raised when théayoutManage has finished performing all needed
diagram and group layouts and til@agramPanel.DiagramBoundsoperty has been updatedThe
frequency of this event depends on the how often layouts need to be performed: the value of
DiagramLayout.Conditionsvhen nales or links being added or removed or resized, and explicit calls to
Diagram.LayoutDiagram()This event occurs after angitialLayoutCompletedevent.

Note: you should ignore tHglElement.LayoutUpdate@vert.
It has nothing to do with diagram layout.

TheDiagram.ModelReplacedventis raised when th®iagram.Modelvalue is replaced.

TheDiagram.SelectionChangezl/ent is raised when the contents of tib#agram.SelectedPartsollection
changes.You might not need to implement such an event handleoif gan depend on dathindings of the
Diagram.SelectedNodeselectedLinkand/or SelectedGrouglependency properties.

TheDiagram.TemplateApplie@vent is raised after th®iagran) @ontrolTemplatehas been expanded.
This is convenient for initializingaiagram.Panelwhichwill not exist until the template is applied.

TheDiagram.TemplatesChangezient is raised whenever any of tBmtaTemplate of theDiagramis
replaced, including the template dictionary properties. However, modifying the contérts o
DataTemplateDictionarwvill not raise any events.

TheDiagramPanel.DiagramBoundsChangaekent is raised whethe value of
DiagramPanel.DiagramBoundes changed.

TheDiagramPanel.ViewportBoundsChangeslent is raised when the value of
DiagramPanel.ViewortBoundshas changed. That happens when hiegramPanel.Positioor Scaleor
Width or Heightproperties have changed.

TheControl.Unloadedevent by default causes theartManagerto discard all of théNodes andLinks. The
Control.Loadecevent rebuildsall of theNodes andLinks. This may result is some loss of state or other-side
effects when theDiagramis removed from the visual tree and thenireserted into it. Typically this will

happen when théiagramis in a tab of &abControland the user switches tabs. We suggest that you set
Diagram.UnloadingClearsPartManagter false in order to avoid the clearing Barts andtheir rebuilding.

Commands

TheDiagramcontrol also supports various commands. TwnmandHandleclass implemers pairs of
methods: a method to execute a command, and a predicate that is true when the command may be
executed. For example, for tl@opycommand, there is @ommandHandler.Copyhethod and a
CommandHandler.CanCopyfethod. These are virtual methods that you can easily customize their
behavior by overriding them and replacing the valu®afgram.CommandHandler

WPF offers support faouted commands. Silverligbnly has limited support for commands, so we have
also provided nofrouted commandshat are defined the same way in both WPF and in Silverlight.

Nonrouted ICommand RoutedCommand
property of CommandHandleclass static property ofCommand<lass (WPF only)
CopyCommand Copy
CutCommand Cut
DeleteCommand Delete
PasteCommand Paste
PrintCommand Print
RedoCommand Redo
SelectAllCommand SelectAll
UndoCommand Undo
DecreaseZoomCommand DecreaseZoom
IncreaseZoomCommand IncreaseZoom
ZoomCommand Zoom
GroupCommand Group
UngroupCommand Ungroup
EditCommand Edit

Using noArouted commands in either WPF or Silverlight:

<Button Command&"{ Binding ElementName =myDiagram,
Path =CommandHandler.CopyCommand}'> Copy</ Button >

Using routed commands in WPF only:

<Button Commané"Copy"
CommandTarget ="{ Binding ElementName =myDiagram}"> Copy</ Button >

User Permissions
Programmatically therés no restriction on the kind of operation that you may perform. However, you may
want to restrict the actions that your users may perform.

The simplest restriction i® setthe Diagramproperty IsEnabledo false Users will not be able to do much
of anything.

More common is to seDiagramlsReadOnlyo true. This allows users to scroll and zoom and to select
parts, but not to insert or delete or drag or modify partSaution: just because the diagram is reauy

R2SayQi

Y S liryyour terfiplat®s2axé fiebidhly cidmost controls do not even have that concept.

More preciserestrictions can be imposed by setting to false properties of@fagramor of a particlar
Layer Some restrictions, such @dlowZoom only make sense when applying to the whBliegram
Others may also apply to individual parsich asopyableon Partcorresponding tdiagramAllowCopy

andto LayerAllowCopy

Most of thesebooleanproperties are true by defaultExceptions includeDiagram.AllowDragOut

DiagramAllowDrop, andPart.Reshapable/Resizable/RotatahlPart. TextEditableb 2 RS ®[A yafddl 6 £ S X

[Ay 1 ®wS {whighpre al fal§ey default.

Enabled Action Diagram Layer Part(Node, Group, orLink)
Property property attached propertieon
root visual element of data
template
Cut/Copy/Paste commands AllowClipboard
Cut/Copy commands, AllowCopy AllowCopy Copyable
control-drag copy
Cut/Delete/Ungroup commands AllowDelete AllowDelete Deletable
Dragand-drop out of diagram AllowDragOut
Dragand-drop into diagram AllowDrop
TextEditingTool AllowEdit AllowEdit Editable(on a Partpnd
TextEditable(on a
TextBlock)
Group command AllowGroup AllowGroup Groupable
Group/Paste commands, Allowlnsert
ClickCreatingTool, DraggingTool
LinkingTool AllowLink AllowLink Node.LinkableFrom
Node.LinkableTp
Node.LinkableSelfNode
Node.LinkableDuplicates
Node.LinkableMaximum
(all on any port element)
DraggingTool AllowMove, AllowMove, Movable, Copyable
AllowCopy AllowCopy DragOveBnapEnabled
Allowlnsert DragOverSnapCellSize,
DragOverSnapCellSpot,
Node.MinLocation
Node.MaxLocation
Printing AllowPrint AllowPrint Printable
RelinkingTool AllowRelink AllowRelink RouteRelinkableFrom
Route RelinkableTo
LinkReshapingTool AllowReshape | AllowReshape | Reshapable
ResizingTool AllowResize AllowResize Resizable

RotatingTool AllowRotate AllowRotate Rotatable
PanningTool, DiagramPanel scrollin| AllowScroll

SelectAlcommand, AllowSelect AllowSelect Selectable
ClickSelectingTool, DragSelectingT¢

Undo/Redo commands AllowUndo

Ungroup command AllowUngroup | AllowUngroup | Group.Ungroupable
Zoom commands AllowZoom

In addition to the diagram/layer/part propertidssted above, there are some relevant properties on some of
the model classes.

TheDiagramModel.Modifiableproperty controls whether the user may create or delete or modibdes or
links or groups.Caution: this property is false by defaultNote also hat a value of false will only disable
changes to the model, not necessarily to your dathe model cannot know about, nor can it affect,data
bindingor programmatic changes thgbu dodirectly to the data.For example, $alse value for
DiagramMadel.Modifiable will not preventusers from moving nodes around, because the model does not
have any knowledge about node positions.

TheGraphLinksModel.ValidCycknd GraphModel.ValidCycleroperties control what kinds of graphs the
model supports. This in turn may limit which links may be drawn or reconnected by the user. By default
there are no restrictions on creatiraycles irgraphs.

TheDiagramModel.HasUndoManagearoperty is falsdoy default. You may set this to true in order to
enable undo and redo of model changes and data property changes.probably will want to set this after
initializing the model, so that users cannot undo your model setup.

Please note that because tténdoManageronly records model and data property changes, if you want the
user to be able to undo/redo the dragoving of nodes, you will need to bind thlode.Locatiorattached
property in your node and group templates to your node data property. For ebeamp

go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}"

Link Validation
In many diagrams there are semantic restrictions on which links could be considered "valid".

A good user interface will try to prevent the user from drawing invalid lifikss is much friendlier than
permitting "bad" links and then trying to point out the errors much later.

There are two linking toold:inkingTooffor drawing new links anBelinkingToofor reconnecting existing
links. There are several buiih properties and methods that will help you constrain the links that the user
may create using these tools.

No links can be drawn by the user unless Ehagramhas alLinkingTooland there are nodes with valid ports
from which the user can draw new linkSo you ca easily prevent new links from being drawn by:

not having any elements in your no@ataTemplateacting as valid portgr

not settingDiagramModel.Modifiableto true, or

making theDiagram.IsReadOnlgr settingDiagram.AllowLinKalse,or

removing theLinkingTooby settingDiagram.LinkingTodio null in either XAML or code

=A =4 =4 =4

The first condition holds true by defaullf you want users to draw new links interactively, say from node A
to node B, you have to make sure that node A has at leasFommeworkElementwith the
Node.LinkableFronattached property set to true, and that node B has at least BraaneworkElement

with the Node.LinkableTattached property set to true(Remember that theskinkable...attached
properties should be set on either theabFrameworkElemenbf the DataTemplateor on any
FrameworkElementi K & A & RS Of [bwseting iheNode Fortld attagHeif papedty, as
discussed in the section about ports on nodes.)

No links can be reconnected by users unlessitagramhasa RelinkingTooknd there are links with a
"Relinkable..." property set to true and there are valid nodes to connectYtmu can prevent users from
reconnecting existing links by:

1 not setting theRoute.RelinkableFronand Route.Relinkable T@roperties in pur link
DataTemplateto true, or

1 not settingDiagramModel.Modifiableto true, or

1 making theDiagram.IsReadOnlgr settingDiagram.AllowRelinKalse,or

1 removing theRelinkingTooby settingDiagram.RelinkingTodb null in either XAML or code

But often ore desires constraints on the permitted links in a diagrdrhere are some predefined properties
that are convenient for declaring certain cases, and there are some methods that you can override for the
general situation.

TheNode.LinkableSelfNodattachedproperty can be set to true oRrameworkElemerg acting as ports in
order to permit both ends of a link to be the same nodBy default reflexive links are not allowed.)

The Node.LinkableDuplicateattached property can be set to true dframeworkElemets acting as ports
in order to allow more than one link connecting the same two ports in the same diredByndefault
multiple links are not allowed.)

TheNode.LinkableMaximunattached property can be set dframeworkElemerg acting as ports to limit
how many links can be connected to that port in either directiBy default there is no limit.)

There is also th¥alidCycleproperty onGraphModeland GraphLinksModethat describes what kinds of
graphs are allowed(By default all kinds of graphs are permitted.)

Finally, for the most general case, where there are applicagfuecific reasons for allowing some links and
disallowing others, you can override th&/alidcinkmethod in both linking tools.

For example, say that you want to change the behavior of the Flow Chart sample to disallow the user from
specifying links that go directly from "Start" nodes to "End" nodésu can achieve this by adding the
following override oisValidLinkto both of the custom linking tools that the Flow Chart sample defines:

public override bool IsValidLink(Node fromnode, FrameworkElement fromport,
Node tonode, FrameworkElement toport) {

if (! base .lsValidLink(fromnode, fromport, tono de, toport)) return false ;

/I don't allow a link directly from Start to End

MyNodeData fromnodedata = fromnode.Data as MyNodeData;

MyNodeData tonodedata = tonode.Data as MyNodeData;

if (fromnodedata != null && fromnodedata.Category == "Start" &&
tonodedata != null && tonodedata.Category == "End") return false ;

return true ;

}

Of course this is just a simple examp¥ou can implement arbitrarily complex predicates that examine your
application data.

Diagram Background and Grids
Since &iagramis a regulaControl, you can set it8ackgroundoroperty as you can withnyother control:

<go: Diagram ... >
<Control.Background >
<RadialGradientBrush >
<GradientStop Color ="White" Offset ="0.0"/>
<GradientStop Color ="LightBlue" Offset ="1.0"/>
</ RadialGradientBrush >
</ Control.Background >
</ go: Diagram >

In Process

.Completed

Grids
Just by settin@iagram.GridVisibleao true, you will show a default grid for the whole diagram.

<go: Diagram GridVisible ="True" BorderBrush ="Blue" BorderThickness ="4".../>

If you also set the various A | 3 NJ Y ® DphapeRi¢syybuldil affect how thBraggingToobperates.

<go: Diagram GridVisible ="True" BorderBrush ="Blue" BorderThickness ="4"
GridSnapEnabled ="True" GridSnapCellSize ="50 50" ... />

Lambda AL"1"'.‘!

Grid snapping involves setting théde.Locatiorto grid points. In this example the
Diagram.NodeTemplatbasreRS FA Y SR (i KS &d cniet ofi thexglared dirgle, @y Settifig the
Node.LocationElementNamandNode.LocationSpoproperties:

<DataTemplate x: Key="NodeTemplate">
<StackPanel go: Part.Text ="{ Binding Path =Data.Key}"
go: Node.Location ="{ Binding Path =Data.Location, Mode=TwoWay}"
go: Node.LocationElementName ="Icon" go: Node.LocationSpot ="Center"
go: Part.SelectionElementName ="lcon"
go: Part.Resizable ="True" (go: Part.ResizeCellSize ="1010">
<! -- in Silverlight surround this witha go:NodePanel -- >
<go: NodeShape x: Name"lcon" go: NodePanel.Figure ="Junction"
HorizontalAlignment ="Center" Width ="25" Height ="25"
Stroke ="Black" StrokeThickness ="1"
Fill ="{ Binding Path =Data.Color,
Converter ={ StaticResource theStringBrushConverter ha
go: Node.Portld ="
go: Node.LinkableFrom ="True" go: Node.LinkableTo ="True"
go: Node.FromSpot ="None" go: Node.ToSpot ="None" />
<TextBlock Text ="{ Binding Path =Data.Key}" HorizontalAlignment ="Center" />
</ StackPanel >
</ DataTemplate >

Hence thecenters of theEllipses are positioned at the grid points that are multiples of 50x50, even though
the grid itself happens to show grid lines every 10x10.

ThisNodeTemplatealso enables usearsizing of the ellipses of selected nodes, by setag.Resiableto
true andPart.SelectionElementNameYou can also control the sizes that ResizingToolill permit, by
settingPart.ResizeCellSizeBy default this would be the value Bfagram.GridSnapCellSiife
Diagram.GridSnapEnabled true.

ResizingToohlso respects the values BfameworkElement.MinWidthMinHeight, MaxWidth, and

MaxHeight. ¢ K2 & S a)\yKaI-EX FGGNROdzi Sa aKz2dzZ R 6S asSid 2y
element for the node.

Custom Grids
Grids are rendered bgridPatterrs,which allow for great flexibility in producing customized grids. You just
need to provide a value fdbiagram.GridPatternfor example as a property element in XAML.:

<go: Diagram GridVisible = ="True" BorderBrush ="Blue" BorderThickness ="4"...>
<go: Diagram.GridPattern >
<go: GridPattern CellSize ="1010">
<Path Stroke ="LightGray" StrokeThickness — ="1"

go: GridPattern.Figure ="HorizontalLine" />
<Path Stroke ="LightGray" StrokeThickness ="1"

go: GridPattern.Figure ="VerticalLine" />
<Path Stroke ="LightGreen" StrokeThickness — ="1"

go: GridPattern.Figure ="HorizontalLine" go: GridPattern.Interval ="5" />
<Path Stroke ="LightBlue" StrokeThickness ="1"

go: GridPattern.Figure ="VerticalLine" go: GridPattern.Interval ="5" />
<Path Stroke ="Orange" StrokeThickness ="1"

go: GridPattern.Figure ="HorizontalLine" go: GridPattern.Interval ="10" />
<Path Stroke ="Purple" StrokeThickness ="1"

go: GridPattern.Figure ="VerticalLine" go: GridPattern.Interval ="10" />
<Path Stroke ="Green" StrokeThickness ="2"

go: GridPattern.Figure ="HorizontalLine" go: GridPattern.Interval ="20" />
<Path Stroke ="Blue" StrokeThickness ="2"

go: GridPattern.Figure ="VerticalLine" go: GridPattern.Interval ="20" />

</ go: GridPattern >
</ go: Diagram.GridPattern >

</ go: Diagram >

Note how theGridPattern.Figureand GridPattern.Intervalattached properties camol the appearance of
the grid. Thdnterval property controls how often thaPathis drawn. All distances between lines are
multiples of theGridPattern.CellSize

Instead of supplying a value fBiagram.GridPatternyou can set it®iagram.GridPatternTemplatewhich
may be more convenient when wanting to style thiagram If neither is specified when
Diagram.GridVisiblés true, it uses a default grid pattern template.

For a completely different appearanceywymight have only horizontal bars (no vertical lines or bars):

<go: Diagram.GridPattern >

<go: GridPattern CellSize ="50 50">
<Path Fill ="LightGreen"
go: GridPattern.Figure ="HorizontalBar" go: GridPattern. Interval ="2"/>
</ go: GridPattern >
</ go: Diagram.GridPattern >

Or show only dots:

<go: Diagram.GridPattern >
<go: GridPattern CellSize ="10 10">
<Path Stroke ="Gray" go: GridPattern.Figure ="HorizontalDot" />
</ go: GridPattern >
</ go: Diagram.GridPattern >
Lambda

(the dots might not be visible in this screenshot)

You can control the size of each dot by setting $tkeThickness

<go: Diagram.GridPattern >
<go: GridPattern CellSize ="10 10">
<Path Stroke ="Gray" go: GridPattern.Figure ="HorizontalDot" />
<Path Stroke ="Red" go: GridPattern.Figure ="HorizontalDot"
StrokeThickness ="2" go: GridPattern.Interval ="5" />
<Path Stroke ="Blue" go: GridPattern.Figure ="VerticalDot"
StrokeThickness ="2" go: GridPattern.Interval ="5" />

</ go: GridPattern >
</ go: Diagram.GridPattern >

(the smallestdots might not be visible in this screenshot)

Note thatGridPatternis aPane| you can use it inside any element. For example GhamupTemplatemight
include aGridPatternthat is different from theDiagram.GridPattern

<DataTemplate x: Key="GroupTemplate">
<StackPanel go: Node.Location ="{ Binding Path =Data.L ocation, Mode=TwoWay}"

go: Node.LocationElementName ="grid"
go: Part.SelectionElementName ="grid" go: Part.Resizable ="True"
go: Part.DragOverSnapEnabled ="True"
go: Part.DragOverSnapCellSize ="15 15">
<TextBlock Text ="{ Binding Path =Data.Key}" FontWeight ="Bold"
HorizontalAlignment ="Left" />
<Border BorderBrush ="{ Binding Path =Data.Color,
Converter ={ StaticResource theStringBrushConverter B
BorderThickness ="5" CornerRadius ="5">

<go: GridPattern x: Name="grid" CellSize ="7.57.5"
MinWidth ="15" MinHeight ="15"
Width ="{ Binding Path =Data.Width, Mode=TwoWay}"
Height ="{ Binding Path =Data.Height, Mode=TwoWay}">
<Path Stroke ="LightGreen" StrokeThickness ="0.5"

go: GridPattern.Figure ="HorizontalLine" />
<Path Stroke ="LightBlue" StrokeThickness ="0.5"
go: GridPattern.Figure ="VerticalLine" />
<Path Stroke ="Green" StrokeThickness ="0.5"
go: GridPattern.Figure ="HorizontalLine" go: GridPattern.Interval ="4"[>
<Path Stroke ="Blue" StrokeThickness ="0.5"
go: GridPattern.Figure ="VerticalLine" go: GridPattern.Interval ="4"[>
<Path Stroke ="Green" StrokeThickness ="1"
go: GridPattern.Figure ="HorizontalLine" go: GridPattern.Interval ="8"/>
<Path Stroke ="Blue" StrokeThickness ="1"
go: GridPattern.Figure ="VerticalLine" go: GridPattern.Interval ="8"/>
</ go: GridPattern >
</ Border >
<TextBlock Text ="{ Binding Path =Data.Key}" HorizontalAlignment ="Right" />

</ StackPanel >
</ DataTemplate >

Printing

ThePrintManagerhas a number of options for controlling what is printed and how. By default it will print
the whole diagram at the standard scalsing as many pages as needed. Or you can set the
PrintManager.Scaléo DoubleNaN to have it automatically shrink the &af needed, to fit a single page.

<go: Diagram ... >
<go: Diagram.PrintManager >
<go: PrintManager Scale ="NaN" />
</ go: Diagram.PrintManager >
</ go: Diagram >

Each page includes an¥Xpage number along with the total numberaailumns and rows of pages. Each
page also includes cut marks so that you can easily trim off the right and bottom sides and tape together a
large continuous diagram.

~

three

1,1 (1x1)

four

-

You can control what area of the diagram, in model coordinates, is printed by setting

Diagram.PrintManager.Bounds

dzii

setting PrintManager.Partsn the initialization:

AlQa

myDiagram.PrintManager.Parts = myDiagram.SelectedParts;

Y2NB O2YY2y

G2 €8

lj

0dKS dz

When nothing is selected, it prints the whole diagram. Note feaatis for whichPrintableis false, parts in
Layes for whichAllowPrint is false, and\dornments are not printed.

You can also customize the decorations that are printed on each pagesfa&tdhe
PrintManager.ForegroundTemplatproperty is the template that you can see in the Generic. XAMLBilg.
you can define your own. For example:

<DataTemplate
<go: SpotPanel >

<l -

<TextBlock

<l -
<Line

<Line

<Line

<Line

<Line

<Line

<Line

<Line

<l --
header -- >
go: SpotPanel.Spot

cutmarks -- >

X1="-10" Y1="0"
go: SpotPanel.Spot
X1="0" Y1="-10"
go: SpotPanel.Spot
X1="10" Y1="0"

go: SpotPanel.Spot
X1="0" Y1="-10"
go: SpotPanel.Spot
X1="10" Y1="0"

go: SpotPanel.Spot
X1="0" Y1="10"

go: SpotPanel.Spot
X1="-10" Y1="0"
go: SpotPanel.Spot
X1="0" Y1="10"

go: SpotPanel.Spot

Text ="{ Binding

x: Key="PrintBorderTemplate">
takes the size of each printed page

="MiddleTop"

X2="0" Y2="0"
="TopLeft"

X2="0" Y2="0"
="TopLeft"

X2="0" Y2="0"
="TopRight"

X2="0" Y2="0"
="TopRight"

X2="0" Y2="0"
="BottomRight"
X2="0" Y2="0"
="BottomRight"
X2="0" Y2="0"
="BottomLeft"
X2="0" Y2="0"
="BottomLeft"

Diagram . Model .Name}"

FontSize
go: SpotPanel.Alignment

Stroke ="Purple"

go: SpotPanel.Alignment
StrokeThickness

Stroke ="Purple"

go: SpotPanel.Alignment
StrokeThickness

Stroke ="Purple"

go: SpotPanel.Alignment
StrokeThickness

Stroke ="Purple"

go: SpotPanel.Alignment
StrokeThickness

Stroke ="Purple"

go: SpotPanel.Alignment
StrokeThickness

Stroke ="Purple"

go: SpotPanel.Alignment
StrokeThickness

Stroke ="Purple"
go: SpotPanel.Alignme
Stroke ="Purple"

>

="20"

go: SpotPanel.Alignment

StrokeThickness

StrokeThickness

="MiddleBottom" />

="
"BottomRight" />

:Illll
"BottomRight" />

="1"
="BottomLeft" />

="
="BottomLeft" />

="1"
="TopLeft" />
="
="TopLeft" />
:Illll
nt ="TopRight" />
="1"
="TopRight" />

<!-- footer -->
<StackPanel go: SpotPanel.Spot ="MiddleBottom"
go: SpotPanel.Alignment ="MiddleTop">
<StackPanel Orientation ="Horizontal" HorizontalAlignment ="Center">
<TextBlock Text ="{ Binding Column}" />

<TextBlock Text =""/>

<TextBlock Text ="{ Binding Row}" />
<TextBlock Text ="; "/>

<TextBlock Text ="{ Binding Index }"/>
<TextBlock Text ="of" />

<TextBlock Text ="{ Binding Count}"/>
<TextBlock Text ="["/>

<TextBlock Text ="{ Binding ColumnCount }" />
<TextBlock Text ="x"/>

<TextBlock Text ="{ Binding RowCount}" />
<TextBlock Text =""/>

</ StackPanel >
<StackPanel Orientation ="Horizontal" HorizontalAlignment ="Center">
<TextBlock Text ="{ Binding ViewportBounds }"/>
<TextBlock Text ="in"/>
<TextBlock Text ="{ Binding TotalBounds }"/>
<TextBlock Text =" @" />
<TextBlock Text ="{ Binding Scale }"/>
</ StackPanel >
</ StackPanel >
</ go: SpotPanel >
</ DataTemplate >

Because these print templates are expanded for each page anebdatad to an instance d?Pagelnfathat
describes that page, you can easily include the page number(s). This example template also shows the
DiagramModel.Nameas the header, which property yowill need to set in your moddiuilding code.

<go: Diagram x: Name="myDiagram" ... >
<go: Diagram.PrintManager >
<go: PrintManager ForegroundTemplate ="{ StaticResource PrintBorderTemplate }
Margin ="30 70 30 70" />
</ go: Diagram.PrintManager >
</ go: Diagram >

N Test Model 23

| 111 of 1 [1x1]
-10,-10,205.239 in -10,-10,205,239 @1

four

If you are displaying a backgrou@didPattern you may want the gritb coverall of each printed pageThe
PrintManager.PageOptionproperty controls whether thdiagram.Backgroundnd Diagram.GridPattern
are prirted and how much of each page theg\er.

<go: Diagram x: Name="myDiagram" GridVisible = ="True" ... >
<go: Diagram.PrintManager >
<go: PrintManager ForegroundTemplate ="{ StaticResource PrintBorderTemplate }
PageOptions ="FullGrid" Margin ="30 70 30 70" />

</ go: Diagram.PrintManager >
</ go: Diagram >

Here is the result of printing a larger diagram with a background grid. This is a screenshot of XPS Viewer at
20% so that all four pages could fit in a reasonable size image for thisméat. It may be hard to read
here, but note the custom header and footer on each page.

Overview
GoXamalso provides a specialized kindifgramcalled theOverview. It displays the whole model shown
by anotherDiagrami Y R 4 K2¢a& GKF G RAFINI YQA OA S Ouedidldiodscroll ¢ K S
0KS 20KSNJ RAIFIAINI YQa GASoLR2 NI O
<Grid >
<Grid.RowDefinitions >
<RowDefinition Height ="*"/>
<RowDefinition Height ="Auto" />

</ Grid.RowDefinitions >
<go: Diagram x: Name="myDiagram" ... >
</ go: Diagram >
<go: Overview x: Name"myOverview" Grid.Row ="1" HorizontalAlignment ="Left"
Width ="140" Height ="140" Background ="WhiteSmoke" />
</ Grid >

For the overview to work, th®verview.Observegroperty must be set to refer to thBiagramthat you
want it to show and control. Typically you can do this whenBiegramhas been initialized

InitializeComponent(); /I inserted by Visual Studio
this.Loaded += (s,e) =>{ myOverview.Observed = myDiagram; h

This might result in a window such as:

d:

The viewport oimyDiagram is shown irmyOverview by the magenta rectangle, which may be dragged by
the user. You can customize that rectangle by setbngrview.BoxTemplate

AnOverviewcannot show any unbound parts of the observed diagatonly shows parts that come from
GKS RAIF3INIYQa Y2RSt®

By default arOverviewuses the sam®ataTemplate as its observeBiagram Given the reduced scale
that the overview shows its partthis may result in unnecessary overhead, particularly if your nodes use
complex templates. It may be much more efficient if you@eerview.UsesObservedTemplatés false

and define your own simple template$-or your purposes it may be good enoughui use simple colored
Rectangls for nodes and simple link shapes without arrowheads or labels for links.

Palette

GoXamalso provides a specialized kindihgramcalled thePalette. It displays a number of nodes in a
rectangular grielike arrangement.

<Grid >
<Grid.ColumnDefinitions >
<ColumnDefinition Width ="*" />
<ColumnDefinition Width ="*" />
</ Grid.ColumnDefinitions >

<go: Palette Grid.Row ="0" Grid.Column ="0" x: Name="myPalette"
BorderBrush ="Black" BorderThickness ="1"

